版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學下冊《平行四邊形》同步練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知是平分線上的一點,,,是的中點,,如果是上一個動點,則的最小值為()A. B. C. D.2、如圖,矩形ABCD中,AC交BD于點O,且AB=24,BC=10,將AC繞點C順時針旋轉90°至CE.連接AE,且F、G分別為AE、EC的中點,則四邊形OFGC的面積是()A.100 B.144 C.169 D.2253、平行四邊形中,,則的度數是()A. B. C. D.4、在中,AC與BD相交于點O,要使四邊形ABCD是菱形,還需添加一個條件,這個條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC5、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.2、已知如圖,點E,F分別在正方形的邊,上,,若,,則_________.3、如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點,連接AE.折疊該紙片,使點A落在AE上的G點,并使折痕經過點B,得到折痕BF,點F在AD上.若,則GE的長為__________.4、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內壁離底部0.1m的點處有一只蚊子,此時一只壁虎正好在容器的頂部點處,若容器壁厚忽略不計,則壁虎捕捉蚊子的最短路程是______m.5、如圖,在中,,,,為上的兩個動點,且,則的最小值是________.三、解答題(5小題,每小題10分,共計50分)1、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側構造等邊△AEF.連結CE,N為CE的中點.
(1)如圖1,EF與AC交于點G,①連結NG,求線段NG的長;②連結ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉,旋轉角為α.M為線段EF的中點.連結DN、MN.當30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結論.2、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點F,過點F作線段AD的垂線交AD于點M;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數量關系,并證明你的結論.3、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點B的坐標;(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點M,點P是AB的中點,連PM,求∠PMO度數;(3)在(2)的條件下,點Q是ON的中點,連PQ,求證:PQ⊥AM.
4、如圖,將□ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F,連接AC、BE.(1)求證:四邊形ABEC是平行四邊形;(2)若∠AFC=2∠ADC,求證:四邊形ABEC是矩形.5、如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.(1)試判斷△BDE的形狀,并說明理由;(2)若AB=6,BC=18,求△BDE的面積.-參考答案-一、單選題1、C【解析】【分析】根據題意由角平分線先得到是含有角的直角三角形,結合直角三角形斜邊上中線的性質進而得到OP,DP的值,再根據角平分線的性質以及垂線段最短等相關內容即可得到PC的最小值.【詳解】解:∵點P是∠AOB平分線上的一點,,∴,∵PD⊥OA,M是OP的中點,∴,∴∵點C是OB上一個動點∴當時,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點睛】本題主要考查了角平分線的性質、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質、垂線段最短等相關內容,熟練掌握相關性質定理是解決本題的關鍵.2、C【解析】【分析】先根據矩形的性質、三角形中位線定理可得,再根據平行四邊形的判定可得四邊形為平行四邊形,然后根據旋轉的性質可得,從而可得,最后根據正方形的判定可得四邊形為正方形,由此即可得.【詳解】解:四邊形為矩形,,,分別為的中點,,,四邊形為平行四邊形,又繞點順時針旋轉,,,平行四邊形為正方形,四邊形的面積是,故選:C.【點睛】本題考查了矩形的性質、正方形的判定與性質、三角形中位線定理等知識點,熟練掌握正方形的判定與性質是解題關鍵.3、B【解析】【分析】根據平行四邊形對角相等,即可求出的度數.【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點睛】本題考查了平行四邊形的性質,解題的關鍵是掌握平行四邊形的性質.4、C【解析】【分析】根據菱形的判定分析即可;【詳解】∵四邊形ABCD時平行四邊形,AO⊥BO,∴是菱形;故選C.【點睛】本題主要考查了菱形的判定,準確分析判斷是解題的關鍵.5、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關鍵在于能夠熟練掌握三角形中位線定理.二、填空題1、【解析】【分析】設BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關于x的方程,求解x即可.【詳解】解:設BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據折疊的性質可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質及翻轉折疊的性質,勾股定理,拓展一元一次方程,準確運用題目中的條件表示出EF列出方程式解題的關鍵.2、14【解析】【分析】過點作的垂線,交延長線于點,先根據正方形的性質、三角形全等的判定定理證出,根據全等三角形的性質可得,再根據三角形全等的判定定理證出,根據全等三角形的性質即可得出答案.【詳解】解:如圖,過點作的垂線,交延長線于點,四邊形是正方形,,,,,,在和中,,,,,,又,,在和中,,,,故答案為:14.【點睛】本題考查了正方形的性質、三角形全等的判定定理與性質等知識點,通過作輔助線,構造全等三角形是解題關鍵.3、##【解析】【分析】由折疊及軸對稱的性質可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長,再利用勾股定理求出BF的長,最后在Rt△ABF中利用面積法可求出AH的長,可進一步求出AG的長,GE的長.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對稱的性質可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點睛】本題考查了正方形的性質,軸對稱的性質,全等三角形的判定與性質,勾股定理,面積法求線段的長度等,解題關鍵是能夠靈活運用正方形的性質和軸對稱的性質.4、2.5.【解析】【分析】如圖所示,將容器側面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內壁離底部0.1m的點B處有一只蚊子,此時一只壁虎正好在容器的頂部點A處,∴,,,過點B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點睛】本題主要考查了平面展開—最短路徑,解題的關鍵在于能夠根據題意確定展開圖中AB的長即為所求.5、【解析】【分析】過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,三點D、M、A′共線時,最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點D、M、A′共線時,A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點睛】本題主要考查了等腰三角形的性質,平行四邊形的判定與性質,勾股定理等知識,構造平行四邊形將AN轉化為DM是解題的關鍵.三、解答題1、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據等邊三角形的性質、勾股定理可得,從而可得,再利用勾股定理可得,然后根據等邊三角形的性質可得,最后根據直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據直角三角形斜邊上的中線等于斜邊的一半可得,再根據等腰三角形的性質可得,從而可得,然后根據四邊形的內角和即可得;(2)連接,先證出,根據全等三角形的性質可得,從而可得,再根據三角形中位線定理可得,然后根據三角形的外角性質、角的和差即可得出結論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點為的中點,∴;②如圖,連接,由(1)①知,,∵,點為的中點,∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點為的中點,點為的中點,∴,∴,∵,即點是的中點,∴,∴,∵,∴,∴的大小為定值.【點睛】本題考查了等邊三角形的性質、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理等知識點,較難的是題(2),通過作輔助線,構造全等三角形和利用到三角形中位線定理是解題關鍵.2、(1)圖形見解析;(2),證明見解析【分析】(1)以C為圓心CD長為半徑畫弧于BC交點即為E;連DE與AC交點即為F;過F作AD的垂直平分線與AD交點即為M;(2)證明DF平分,再利用角平分線的性質判定即可.【詳解】(1)圖形如下:(2),證明如下:由(1)可得:,CE=CD∴∵四邊形ABCD是平行四邊形∴AD∥BC,AB∥CD∴,∴即DF平分∵∠BAC=90°∴∴【點睛】本題考查了作圖-復雜作圖:解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定與性質.3、(1)(1,4);(2)45°;(3)見解析
【分析】(1)過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點A的坐標為(-4,1),得到OF=AE=1,BF=OE=4,則點B的坐標為(1,4);(2)延長MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點坐標為(-4,1),B點坐標為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點A的坐標為(-4,1),∴OF=AE=1,BF=OE=4,∴點B的坐標為(1,4);(2)如圖所示,延長MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點P是AB的中點,∴AP=BP,∴△APH≌△BPM(AAS),∴AH=BM,∵A點坐標為(-4,1),B點坐標為(1,4),∴AN=4,OM=4,BM=1,ON=1,∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,∴HN=MN,∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如圖所示,連接OP,AM,取BM中點G,連接GP,∴GP是△ABM的中位線,∴AM∥GP,∵Q是ON的中點,G是BM的中點,ON=BM=1,∴,∵P是AB中點,△AOB是等腰直角三角形,∠AOB=90°,∴,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON,∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,由(2)得∠GBP=∠BAN,∴∠GBP=∠QOP,∴△PQO≌△PGB(SAS),∴∠OPQ=∠BPG,∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,∴PQ⊥PG,∴PG⊥AM;【點睛】本題主要考查了坐標與圖形,全等三角形的性質與判定,三角形中位線定理,等腰直角三角形的性質與判定等等,解題的關鍵在于能夠熟練掌握全等三角形的性質與判定條件.4、(1)證明見解析;(2)證明見解析;【分析】(1)根據平行四邊形的性質得到,AB=CD,然后根據CE=DC,得到A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國節(jié)能環(huán)??照{行業(yè)銷售規(guī)模與營銷前景評估研究報告
- 2025-2030中國半鎮(zhèn)靜鋼市場供需形勢及營銷發(fā)展趨勢研究報告
- 2025-2030中國加濕器市場銷售戰(zhàn)略研究及產銷需求洞察研究報告
- 周口實驗高級中學(鄲城一高周口校區(qū))2026年招聘公費師范生備考題庫完整參考答案詳解
- 2026年武漢市第六醫(yī)院招聘護士若干(招滿即止)備考題庫及1套完整答案詳解
- 威遠縣緊密型縣域醫(yī)共體管理委員會2025年下半年公開招聘成員單位編外人員的備考題庫及一套參考答案詳解
- 安義縣林業(yè)局2025年公開招聘專職護林員備考題庫及一套完整答案詳解
- 南昌職業(yè)大學2026年招生品宣管培生招聘備考題庫及答案詳解一套
- 2025至2030中國光伏逆變器海外市場拓展策略及匯率風險防范分析報告
- 2025至2030學前教育裝備市場發(fā)展分析及前景趨勢與資本介入機會研究報告
- 人工智能推動金融數據治理轉型升級研究報告2026
- 2026長治日報社工作人員招聘勞務派遣人員5人備考題庫含答案
- 期末教師大會上校長精彩講話:師者當備三盆水(洗頭洗手洗腳)
- 2026年濰坊職業(yè)學院單招綜合素質筆試備考試題附答案詳解
- 工兵基礎知識課件
- 2026年貴州省交通綜合運輸事務中心和貴州省鐵路民航事務中心公開選調備考題庫及答案詳解參考
- 2025四川雅安市名山區(qū)茗投產業(yè)集團有限公司招聘合同制員工10人參考題庫附答案
- 人工智能應用與實踐 課件 -第5章-智能體開發(fā)與應用
- 2025浙江紹興越城黃酒小鎮(zhèn)旅游開發(fā)有限公司編外人員第二次招聘總筆試歷年典型考點題庫附帶答案詳解2套試卷
- 聘用2025年3D建模合同協議
- 2025-2026學年西南大學版小學數學六年級(上冊)期末測試卷附答案(3套)
評論
0/150
提交評論