版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南湘潭市電機子弟中學7年級數學下冊第五章生活中的軸對稱綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,在中,,,是上一點,將沿折疊,使點落在邊上的處,則等于()A. B. C. D.2、下面四個圖形是軸對稱圖形的是()A. B. C. D.3、北京2022年冬奧會會徽“冬夢”正式發(fā)布.以下是參選的會徽設計的一部分圖形,其中是軸對稱圖形的是()A. B. C. D.4、如圖,點D是∠FAB內的定點且AD=2,若點C、E分別是射線AF、AB上異于點A的動點,且△CDE周長的最小值是2時,∠FAB的度數是()A.30° B.45° C.60° D.90°5、下列圖案中,屬于軸對稱圖形的是()A. B. C. D.6、中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.2006年5月20日,剪紙藝術遺產經國務院批準列入第一批國家級非物質文化遺產名錄.2009年9月28日至10月2日舉行的聯合國教科文組織保護非物質文化遺產政府間委員會第四次會議上,中國申報的中國剪紙項目入選“人類非物質文化遺產代表作名錄”.下列四個剪紙圖案是軸對稱圖形的為()A. B. C. D.7、現實世界中,對稱現象無處不在,中國的方塊字中有些也具有對稱性.下列漢字是軸對稱圖形的是()A.喜 B.歡 C.數 D.學8、下列圖形是軸對稱圖形的是()A. B. C. D.9、下面四個圖形中,是軸對稱圖形的是()A. B. C. D.10、在一些美術字中,有的漢字是軸對稱圖形.下面?zhèn)€漢字中,可以看作是軸對稱圖形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,腰長為22的等腰ABC中,頂角∠A=45°,D為腰AB上的一個動點,將ACD沿CD折疊,點A落在點E處,當CE與ABC的某一條腰垂直時,BD的長為_______.2、如圖,將△ABC折疊,使點B落在AC邊的中點D處,折痕為MN,若BC=3,AC=2,則△CDN的周長為___.3、如圖,是軸對稱圖形且只有兩條對稱軸的是__________(填序號).4、下列圖案是軸對稱圖形的有___個.5、如圖,在3×3的正方形網格中,格線的交點稱為格點,以格點為頂點的三角形稱為格點三角形.圖中的△ABC為格點三角形.在圖中最多能畫出___個格點三角形與△ABC成軸對稱.6、已知,如圖,,點M,N分別是邊OA,OB上的定點,點P,Q分別是邊OB,OA上的動點,記,,當最小時,則______.7、如圖,正三角形網格中,已有兩個小正三角形被涂黑,再將圖中其余小正三角形涂黑一個,使整個被涂黑的圖案構成一個軸對稱圖形的方法有_________種.8、如果一個圖形沿一條直線________,直線兩旁的部分能夠________,這個圖形就叫做____;這條直線就是它的________.9、如圖所示,在△ABC中,∠BAC=60°,AD平分∠BAC交BC與點D,點P為邊AC上的一動點,連接PB、PD,若AB=AD=,則PB+PD的最小值為___.10、如圖,與關于直線對稱,則的度數為_____.三、解答題(6小題,每小題10分,共計60分)1、如圖,網格中的△ABC與△DEF為軸對稱圖形.(1)利用網格線作出△ABC與△DEF的對稱軸l;(2)如果每一個小正方形的邊長為1,請直接寫出△ABC的面積=.2、如圖,在的正方形網格中,每個小正方形的邊長都為1,網格中有一個格點(即三角形的頂點都在格點上).在圖中作出關于直線l對稱的(要求:A與,B與,C與相對應).3、如圖,從圖形Ⅰ到圖形Ⅱ是進行了平移還是軸對稱?如果是軸對稱,找出對稱軸;如果是平移,是怎樣的平移?4、如圖,在10×10的正方形網格中,每個小正方形的邊長都為1,網格中有一個格點三角形ABC(三角形的頂點都在網格格點上).(1)在圖中畫出△ABC關于直線l對稱的△A′B′C′(要求:點A與點A′、點B與點B′、點C與點C′相對應);(2)在(1)的結果下,設AB交直線l于點D,連接AB′,求四邊形AB′CD的面積.5、如圖,邊長為1的正方形網格中,△ABC的三個頂點A、B、C都在格點上.(1)畫出△ABC關于x軸的對稱圖形△DEF(其中點A、B、C的對稱點分別是D、E、F),則點D坐標為.(2)在y軸上找一點P,使得PA+PC最短,請畫出點P所在的位置,并寫出點P的坐標.6、如圖1,在Rt△ABC中,∠ABC=90°,AB=BC,D為BC邊上一點,連接AD,將△ABD沿AB翻折得到△ABE,過點E作AD的垂線,垂足為F,延長EF交AC于G.(1)求證:EA=EG;(2)連接DG.①如圖2,當DG⊥AC時,試判斷BD與CD的數量關系,并說明理由;②若AB=5,△EDG的面積為4,請直接寫出△CDG的面積.-參考答案-一、單選題1、D【分析】先根據三角形內角和定理求出∠B的度數,再由圖形翻折變換的性質得出∠CED的度數,再由三角形外角的性質即可得出結論.【詳解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折疊而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故選:D.【點睛】本題考查了三角形內角和定理,翻折變換的性質,根據題意得出∠ADE=∠CED-∠A是解題關鍵.2、B【分析】軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,根據此概念進行分析.【詳解】解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選:B.【點睛】此題主要考查了軸對稱圖形,判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.3、A【分析】利用軸對稱圖形的概念進行解答即可.【詳解】解:A.是軸對稱圖形,故此選項符合題意;B.不是軸對稱圖形,故此選項不合題意;C.不是軸對稱圖形,故此選項不合題意;D.不是軸對稱圖形,故此選項不合題意;故選:A.【點睛】本題主要是考查了軸對稱圖形的概念,判別軸對稱圖形的關鍵是找對稱軸.4、A【分析】作D點分別關于AF、AB的對稱點G、H,連接GH分別交AF、AB于C′、E′,利用軸對稱的性質得AG=AD=AH=2,利用兩點之間線段最短判斷此時△CDE周長最小為DC′+DE′+C′E′=GH=2,可得△AGH是等邊三角形,進而可得∠FAB的度數.【詳解】解:如圖,作D點分別關于AF、AB的對稱點G、H,連接GH分別交AF、AB于C′、E′,連接DC′,DE′,此時△CDE周長最小為DC′+DE′+C′E′=GH=2,根據軸對稱的性質,得AG=AD=AH=2,∠DAF=∠GAF,∠DAB=∠HAB,∴AG=AH=GH=2,∴△AGH是等邊三角形,∴∠GAH=60°,∴∠FAB=∠GAH=30°,故選:A.【點睛】本題考查了軸對稱-最短路線問題:熟練掌握軸對稱的性質,會利用兩點之間線段最短解決路徑最短問題.5、B【詳解】解:A、不是軸對稱圖形,故本選項不符合題意;B、是軸對稱圖形,故本選項符合題意;C、不是軸對稱圖形,故本選項不符合題意;D、不是軸對稱圖形,故本選項不符合題意;故選:B【點睛】本題主要考查了軸對稱圖形的定義,熟練掌握若一個圖形沿著一條直線折疊后兩部分能完全重合,這樣的圖形就叫做軸對稱圖形,這條直線叫做對稱軸是解題的關鍵.6、A【分析】軸對稱圖形是指在平面內沿著一條直線折疊,直線兩旁的部分能夠完全重合的圖形,據此判斷各個選項即可.【詳解】解:根據軸對稱圖形的定義可得:只有A選項符合軸對稱圖形的定義,故選:A.【點睛】題目主要考查軸對稱圖形的識別,理解軸對稱圖形的定義是解題關鍵.7、A【分析】利用軸對稱圖形的概念可得答案.【詳解】解:A、是軸對稱圖形,故此選項合題意;B、不是軸對稱圖形,故此選項不合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:A.【點睛】本題主要考查了軸對稱圖形,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.8、C【分析】根據如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析即可.【詳解】解:選項A、B、D不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形,選項C能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形,故選:D.【點睛】此題主要考查了軸對稱圖形,關鍵是正確確定對稱軸位置.9、D【分析】根據軸對稱圖形的定義判斷即可.【詳解】∵不是軸對稱圖形,∴A不符合題意;∵不是軸對稱圖形,∴B不符合題意;∵不是軸對稱圖形,∴C不符合題意;∵是軸對稱圖形,∴D符合題意;故選D.【點睛】本題考查了軸對稱圖形即沿直線折疊,直線兩旁的部分能夠完全重合的圖形,熟記定義是解題的關鍵.10、A【分析】如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.利用軸對稱圖形的定義進行判斷即可.【詳解】解:A、是軸對稱圖形,故此選項符合題意;B、不是軸對稱圖形,故此選項不符合題意;C、不是軸對稱圖形,故此選項不符合題意;D、不是軸對稱圖形,故此選項不符合題意;故選:A【點睛】此題主要考查了軸對稱圖形的定義,關鍵是掌握如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸.二、填空題1、或2【分析】分兩種情況:當CE⊥AB時,設垂足為M,在Rt△AMC中,∠A=45°,由折疊得:∠ACD=∠DCE=22.5°,證明△BCM≌△DCM,得到BM=DM,證明△MDE是等腰直角三角形,即可得解;當CE⊥AC時,根據折疊的性質,等腰直角三角形的判定與性質計算即可;【詳解】當CE⊥AB時,如圖,設垂足為M,在Rt△AMC中,∠A=45°,由折疊得:∠ACD=∠DCE=22.5°,∵等腰△ABC中,頂角∠A=45°,∴∠B=∠ACB=67.5°,∴∠BCM=22.5°,∴∠BCM=∠DCM,在△BCM和△DCM中,,∴△BCM≌△DCM(ASA),∴BM=DM,由折疊得:∠E=∠A=45°,AD=DE,∴△MDE是等腰直角三角形,∴DM=EM,設DM=x,則BM=x,DEx,∴ADx.∵AB=22,∴2xx=22,解得:x,∴BD=2x=2;當CE⊥AC時,如圖,∴∠ACE=90°,由折疊得:∠ACD=∠DCE=45°,∵等腰△ABC中,頂角∠A=45°,∴∠E=∠A=45°,AD=DE,∴∠ADC=∠EDC=90°,即點D、E都在直線AB上,且△ADC、△DEC、△ACE都是等腰直角三角形,∵AB=AC==22,∴ADAC=2,BD=AB﹣AD=(22)﹣(2),綜上,BD的長為或2.故答案為:或2.【點睛】本題主要考查折疊的性質,等腰直角三角形的判定與性質,全等三角形的判定與性質,注重分類討論思想的運用是解題的關鍵.2、4【分析】由折疊可得NB=ND,由點D是AC的中點,可求出CD的長,將△CDN的周長轉化為CD+BC即可.【詳解】解:由折疊得,NB=ND,∵點D是AC的中點,∴CD=AD=AC=×2=1,∴△CDN的周長=CD+ND+NC=CD+NB+NC=CD+BC=1+3=4,故答案為:4.【點睛】本題考查了折疊的性質,將三角形的周長轉化為CD+BC是解決問題的關鍵.3、①②【分析】一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,那么這個圖形就是軸對稱圖形,這條直線就是它的一條對稱軸,由此即可判斷圖形的對稱軸條數及位置.【詳解】圖標中,是軸對稱圖形的有①②③,其中只有2條對稱軸的是①②,有4條對稱軸的是③。故答案為:①②.【點睛】此題考查了利用軸對稱圖形的定義判斷軸對稱圖形的對稱軸條數的靈活應用,這里要求學生熟記已學過的特殊圖形的對稱軸特點進行解答.4、2【分析】根據軸對稱圖形的概念求解,如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】解:第一幅圖,是軸對稱圖形;第二幅圖不是軸對稱圖形;第三幅圖是軸對稱圖形;第四幅圖不是軸對稱圖形;故答案為:2.【點睛】此題主要考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、6【分析】根據網格結構分別確定出不同的對稱軸,然后作出軸對稱三角形即可得解【詳解】解:如圖,以AB的中垂線為對稱軸如圖1,以BC邊所在直線為對稱軸如圖2,以AB邊所在三網格中間網格的垂直平分線為對稱軸如圖3,以BC邊中垂線為對稱軸,以3×3網格的對角線所在直線為對稱軸如圖5,圖6,最多能畫出6個格點三角形與△ABC成軸對稱.故答案為:6.【點睛】本題考查了利用軸對稱變換作圖,熟練掌握網格結構并準確找出對應點的位置是解題的關鍵,本題難點在于確定出不同的對稱軸.6、60°度【分析】作M關于OB的對稱點M′,N關于OA的對稱點N′,連接M′N′交OA于Q,交OB于P,則MP+PQ+QN最小易知∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,根據三角形的外角的性質和平角的定義即可得到結論.【詳解】解:如圖,作M關于OB的對稱點M′,N關于OA的對稱點N′,連接M′N′交OA于Q,交OB于P,則MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=(180°﹣α)=∠AOB+∠MQP=30°+(180°﹣β),∴180°﹣α=60°+(180°﹣β),∴β﹣α=60°,故答案為:60.【點睛】本題考查軸對稱﹣最短路線問題、三角形的內角和定理.三角形的外角的性質等知識,解題的關鍵是靈活運用軸對稱知識作出輔助線解決問題.7、3【分析】根據軸對稱圖形的定義:如果一個圖形沿一條直線對折,直線兩旁的部分能互相重合,那么這個圖形叫做軸對稱圖形,做答即可.【詳解】解:如圖所示,根據軸對稱圖形的定義可知,選擇一個小正三角形涂黑,使整個被涂黑的圖案構成一個軸對稱圖形,選擇的位置可以有以下3種可能:故答案為:3.【點睛】本題考查軸對稱圖形,解題的關鍵是熟知軸對稱的概念.8、折疊互相重合軸對稱圖形對稱軸【分析】根據軸對稱圖形的概念直接填空即可.【詳解】解:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸.故答案為:折疊,互相重合,軸對稱圖形,對稱軸.【點睛】本題考查了軸對稱圖形的概念,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形,這條直線就是它的對稱軸,解題關鍵是熟記定義.9、【分析】作D關于AC的對稱點E,連接AE,BE,PE,由軸對稱的性質得,,PE=PD,∠DAP=∠EAP,則要想使PD+PB的值最小,則PB+PE的值最小,故當B、P、E三點共線時,PB+PE的值最小,即為PE,然后證明∠BAE=90°,即可利用勾股定理求解.【詳解】解:如圖所示,作D關于AC的對稱點E,連接AE,BE,PE,由軸對稱的性質得,,PE=PD,∠DAP=∠EAP,∴PB+PD=PB+PE,∴要想使PD+PB的值最小,則PB+PE的值最小,∴當B、P、E三點共線時,PB+PE的值最小,即為PE,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=∠DAP=∠EAP=30°,∴∠BAE=90°,∴,故答案為:.【點睛】本題主要考查了軸對稱最短路徑問題,角平分線的定義,勾股定理,解題的關鍵在于能夠根據題意作出輔助線求解.10、121°【分析】根據軸對稱的性質,軸對稱圖形全等,則∠A=∠A′,∠B=∠B′,∠C=∠C′,再根據三角形內角和定理即可求得.【詳解】解:∵△ABC與△A′B′C′關于直線l對稱,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠A=∠A′=36°,∠B=∠B′=23°,∴∠C=180°?36°?23°=121°.故答案為:121°.【點睛】本題考查了軸對稱圖形的性質,全等的性質,三角形內角和定理,理解軸對稱圖形的性質是解題的關鍵.三、解答題1、(1)見解析;(2)【分析】(1)對應點連線段的垂直平分線即為對稱軸;(2)根據三角形的面積等于矩形面積減去周圍三個三角形面積即可.【詳解】解:(1)如圖,直線l即為所求;(2)S△ABC=2×4﹣×1×2﹣×2×2﹣×1×4=3.【點睛】本題主要考查了畫軸對稱圖形,熟練掌握畫軸對稱圖形的關鍵是找到對稱軸,得到對應點是解題的關鍵.2、見解析【分析】作出A、B、C三點關于直線l的對稱點、、即可;【詳解】解:如圖,是關于直線l的對稱圖形:【點睛】本題考查作圖-軸對稱變換,解題的關鍵是熟練掌握對稱軸的性質,屬于中考??碱}型.3、(1)圖形Ⅰ和圖形Ⅱ關于y軸對稱;(2)將圖形Ⅰ先向左平移5個單位長度,再向下平移3個單位長度,得到圖形Ⅱ;(3)將圖形Ⅰ先向右平移5個單位長度,再向下平移3個單位長度,得到圖形Ⅱ;(4)圖形Ⅰ和圖形Ⅱ關于x軸對稱.【分析】根據軸對稱的性質與平移的性質對各圖形分析判斷進行解答即可.【詳解】解:(1)中從圖形Ⅰ到圖形Ⅱ是進行了軸對稱變換,對稱軸是y軸;(2)中從圖形Ⅰ到圖形Ⅱ是進行了平移變換,先向左平移5個單位長度,再向下平移3個單位長度;(3)中從圖形Ⅰ到圖形Ⅱ是進行了平移變換,先向右平移5個單位長度,再向下平移3個單位長度;(4)中從圖形Ⅰ到圖形Ⅱ是進行了軸對稱變換,對稱軸是x軸.【點睛】本題考查了軸對稱的性質,平移的性質,熟練掌握性質并準確識圖是解題的關鍵.4、(1)見解析;(2)14【分析】(1)根據軸對稱圖形的性質畫圖即可;(2)根據網格結構和割補法進行計算即可求得面積.【詳解】解:(1)如圖,△A′B′C′即為所求作的三角形;(2)四邊形AB′CD的面積為:4×6-×3×5-×4×1-×1×1=24-7.5-2-0.5=14.【點睛】本題考查畫軸對稱圖形,熟練掌握軸對稱的性質,會利用割補法求解網格中不規(guī)則圖形的面積是解答的關鍵.5、(1)見解析,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 3D打印藥物緩釋植入體的釋放動力學研究
- 3D打印技術在神經內鏡手術中的應用
- 2025年成都紡織高等專科學校公開招聘電氣工程師工作人員的備考題庫及1套完整答案詳解
- 2025年晉江市博物館公開招聘編外人員的備考題庫有答案詳解
- 漸變風粉紫品牌推廣總結及未來規(guī)劃
- 2025年西安市浐灞第一幼兒園招聘備考題庫完整參考答案詳解
- 安鋼總醫(yī)院2026年度招聘25人備考題庫有答案詳解
- 外研版三起四年級下冊Review of Module 6課件2
- 《繪本閱讀在小學低年級語文教學中的多元文化教育策略》教學研究課題報告
- 2025年貴陽市白云區(qū)招聘數據標注等崗70人+備考題庫帶薪培訓備考題庫五險一金備考題庫及1套參考答案詳解
- 2025年重慶青年職業(yè)技術學院非編合同制工作人員招聘68人備考題庫及一套答案詳解
- 2025年常熟市交通產業(yè)投資集團有限公司(系統)招聘14人備考題庫含答案詳解
- 云南省昭通市2024-2025學年七年級上學期期末歷史試題(含答案)
- 水泥供應、運輸、售后服務方案
- 澳洲10計劃教程
- 校園小品《我的未來不是夢》劇本
- 2024稅務代理合同協議原件
- 江蘇自考現代企業(yè)經營管理-練習題(附答案)27875
- 電力建設施工技術規(guī)范 第5部分:管道及系統-DLT 5190.5
- 四川省宜賓市2023-2024學年高二物理第一學期期末聯考試題含解析
- 玻璃隔墻拆除施工方案
評論
0/150
提交評論