難點(diǎn)解析黑龍江省訥河市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)試試題(含詳解)_第1頁
難點(diǎn)解析黑龍江省訥河市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)試試題(含詳解)_第2頁
難點(diǎn)解析黑龍江省訥河市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)試試題(含詳解)_第3頁
難點(diǎn)解析黑龍江省訥河市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)試試題(含詳解)_第4頁
難點(diǎn)解析黑龍江省訥河市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)試試題(含詳解)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省訥河市中考數(shù)學(xué)真題分類(勾股定理)匯編綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,中,,將折疊,使點(diǎn)C與的中點(diǎn)D重合,折痕交于點(diǎn)M,交于點(diǎn)N,則線段的長為(

).A. B. C.3 D.2、如圖,△ABC中,,以其三邊分別向外側(cè)作正方形,然后將整個(gè)圖形放置于如圖所示的長方形中,若要求圖中兩個(gè)陰影部分面積之和,則只需知道(

)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積3、觀察“趙爽弦圖”(如圖),若圖中四個(gè)全等的直角三角形的兩直角邊分別為a,b,,根據(jù)圖中圖形面積之間的關(guān)系及勾股定理,可直接得到等式(

)A. B.C. D.4、《九章算術(shù)》是我國古代數(shù)學(xué)名著,記載著這樣一個(gè)問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”大意是:有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?設(shè)蘆葦?shù)拈L度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)25、兩只小鼴鼠在地下打洞,一只朝正北方向挖,每分鐘挖8cm,另一只朝正東方向挖,每分鐘挖6cm,10分鐘之后兩只小鼴鼠相距(

)A.50cm B.120cm C.140cm D.100cm6、如圖,點(diǎn),在直線的同側(cè),到的距離,到的距離,已知,是直線上的一個(gè)動(dòng)點(diǎn),記的最小值為,的最大值為,則的值為(

)A.160 B.150 C.140 D.1307、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,則AC=_________米.2、如圖,在離水面高度為8米的岸上,有人用繩子拉船靠岸,開始時(shí)繩子BC的長為17米,幾分鐘后船到達(dá)點(diǎn)D的位置,此時(shí)繩子CD的長為10米,問船向岸邊移動(dòng)了__米.3、(2011貴州安順,16,4分)如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),那么△ADC′的面積是.4、已知a、b、c是一個(gè)三角形的三邊長,如果滿足,則這個(gè)三角形的形狀是_______.5、如圖所示,數(shù)軸上點(diǎn)A所表示的數(shù)為_______.6、如圖,CD是△ABC的中線,將△ACD沿CD折疊至,連接交CD于點(diǎn)E,交CB于點(diǎn)F,點(diǎn)F是的中點(diǎn).若的面積為12,,則點(diǎn)F到AC的距離為______.7、如圖,在網(wǎng)格中,每個(gè)小正方形的邊長均為1.點(diǎn)A、B,C都在格點(diǎn)上,若BD是△ABC的高,則BD的長為__________.8、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長為15+9,則CD的長為_____.三、解答題(7小題,每小題10分,共計(jì)70分)1、在△ABC中,,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)△ABP為直角三角形時(shí),求t的值.2、如圖,AD是△ABC的中線,DE⊥AC于點(diǎn)E,DF是△ABD的中線,且CE=2,DE=4,AE=8.(1)求證:;(2)求DF的長.3、如圖,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,點(diǎn)A,C,D依次在同一直線上,且AB∥DE.(1)求證:△ABC≌△DCE;(2)連結(jié)AE,當(dāng)BC=5,AC=12時(shí),求AE的長.4、在一條東西走向河的一側(cè)有一村莊C,河邊原有兩個(gè)取水點(diǎn)A,B,其中AB=AC,由于種種原因,由C到A的路現(xiàn)在已經(jīng)不通了,某村為方便村民取水決定在河邊新建一個(gè)取水點(diǎn)H(A,H,B在一條直線上),并新修一條路CH,測(cè)得CB=3千米,CH=2.4千米,HB=1.8千米.(1)問CH是不是從村莊C到河邊的最近路,請(qǐng)通過計(jì)算加以說明;(2)求原來的路線AC的長.5、如圖,在△ABC中,∠C=90°,M是BC的中點(diǎn),MD⊥AB于D,求證:.6、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當(dāng)n>1時(shí),n2﹣1,2n,B為直角三角形的三邊長,如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ8勾股數(shù)組Ⅱ357、如圖,在四邊形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的長.-參考答案-一、單選題1、D【解析】【分析】由折疊的性質(zhì)可得DN=CN,根據(jù)勾股定理可求DN的長,即可得出結(jié)果.【詳解】解:∵D是AB中點(diǎn),AB=4,∴AD=BD=2,∵將△ABC折疊,使點(diǎn)C與AB的中點(diǎn)D重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=,∴CN=DN=,故選:D.【考點(diǎn)】本題考查了翻折變換、折疊的性質(zhì)、勾股定理,熟練運(yùn)用折疊的性質(zhì)是本題的關(guān)鍵.2、D【解析】【分析】如圖所示,過點(diǎn)C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點(diǎn)C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠正確作出輔助線,構(gòu)造全等三角形.3、C【解析】【分析】根據(jù)小正方形的面積等于大正方形的面積減去4個(gè)直角三角形的面積可得問題的答案.【詳解】標(biāo)記如下:∵,∴(a﹣b)2=a2+b2﹣4=a2﹣2ab+b2.故選:C.【考點(diǎn)】此題考查的是利用勾股定理的證明,可以完全平方公式進(jìn)行證明,掌握面積差得算式是解決此題關(guān)鍵.4、C【解析】【分析】首先設(shè)蘆葦長x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.5、D【解析】【分析】畫出圖形,利用勾股定理即可求解.【詳解】解:如圖,cm,cm,∴在中,cm,故選:D【考點(diǎn)】本題考查了勾股定理的應(yīng)用,理解題意,畫出圖形是解題的關(guān)鍵.6、A【解析】【分析】作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過點(diǎn)作直線,在根據(jù)勾股定理求出線段的長,即為PA+PB的最小值,延長AB交MN于點(diǎn),此時(shí),由三角形三邊關(guān)系可知,故當(dāng)點(diǎn)P運(yùn)動(dòng)到時(shí)最大,過點(diǎn)B作由勾股定理求出AB的長就是的最大值,代入計(jì)算即可得.【詳解】解:如圖所示,作點(diǎn)A關(guān)于直線MN的對(duì)稱點(diǎn),連接交直線MN于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),過點(diǎn)作直線,∵,,,∴,,,在中,根據(jù)勾股定理得,∴,即PA+PB的最小值是;如圖所示,延長AB交MN于點(diǎn),∵,,∴當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)時(shí),最大,過點(diǎn)B作,則,∴,在中,根據(jù)勾股定理得,,∴,即,∴,故選A.【考點(diǎn)】本題考查了最短線路問題和勾股定理,解題的關(guān)鍵是熟知兩點(diǎn)之間線段最短及三角形的三邊關(guān)系.7、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.二、填空題1、【解析】【分析】首先根據(jù)BC,AC的比設(shè)出BC,AC,然后利用勾股定理列式計(jì)算求得a,即可求解.【詳解】解:∵AC∶BC=1∶7,∴設(shè)AC=a,則BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案為:10.【考點(diǎn)】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.2、9.【解析】【分析】在Rt△ABC中,利用勾股定理計(jì)算出AB長,再根據(jù)題意可得CD長,然后再次利用勾股定理計(jì)算出AD長,再利用BD=AB-AD可得BD長.【詳解】在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵CD=10(米),∴AD==6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸邊移動(dòng)了9米,故答案為:9.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,關(guān)鍵是掌握從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.3、6cm2【解析】【分析】先根據(jù)勾股定理得到AB=10cm,再根據(jù)折疊的性質(zhì)得到DC=DC′,BC=BC′=6cm,則AC′=4cm,設(shè)DC=xcm,在Rt△ADC′中根據(jù)勾股定理列方程求得x的值,然后根據(jù)三角形的面積公式計(jì)算即可.【詳解】∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵將△BCD沿BD折疊,使點(diǎn)C落在AB邊的C′點(diǎn),∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB-BC′=4cm,設(shè)DC=xcm,則AD=(8-x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8-x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面積═×AC′×C′D=×4×3=6(cm2).考點(diǎn):折疊的性質(zhì),勾股定理點(diǎn)評(píng):折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)點(diǎn)的連線段被折痕垂直平分.4、直角三角形【解析】【分析】根據(jù)絕對(duì)值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.5、【解析】【分析】根據(jù)數(shù)軸上點(diǎn)的特點(diǎn)和相關(guān)線段的長,結(jié)合勾股定理求出斜邊長,即可求出-1和A之間的線段的長,即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長為,那么-1和A之間的距離為,那么數(shù)軸上點(diǎn)A所表示的數(shù)為:.故答案為:.【考點(diǎn)】本題考查實(shí)數(shù)與數(shù)軸之間的對(duì)應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長是解答本題的關(guān)鍵.6、【解析】【分析】過點(diǎn)F作FH⊥AC于點(diǎn)H,由翻折的性質(zhì)可知S△AA'D=24,由D為AB的中點(diǎn),則S△AA'B=2S△AA'D=48,得AA'=12,再通過AAS證明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE中,由勾股定理求出AC的長,最后通過面積法即可求出FH的長.【詳解】解:如圖,過點(diǎn)F作FH⊥AC于點(diǎn)H,根據(jù)翻折的性質(zhì)得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中線,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D為AB的中點(diǎn),∴S△AA'B=2S△AA'D=48,即×AA′×A′B=48,∴AA'=12,又∵F為A'E的中點(diǎn),∴A'F=EF,在△A'BF與△ECF中,,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA==10,在△CAF中,CA?HF=AF?CE,∴HF==,即點(diǎn)F到AC的距離為,故答案為:.【考點(diǎn)】本題主要考查了翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識(shí),運(yùn)用等積法求垂線段的長是解題的關(guān)鍵.7、##【解析】【分析】根據(jù)勾股定理計(jì)算AC的長,利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結(jié)論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點(diǎn)】本題考查了勾股定理,三角形的面積的計(jì)算,掌握勾股定理是解題的關(guān)鍵.8、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點(diǎn)】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長的計(jì)算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.三、解答題1、當(dāng)△ABP為直角三角形時(shí),t=4或.【解析】【分析】當(dāng)△ABP為直角三角形時(shí),分兩種情況:①當(dāng)∠APB為直角時(shí),②當(dāng)∠BAP為直角時(shí),分別求出此時(shí)t的值即可.【詳解】在Rt△ABC中,由勾股定理得:,∴BC=4cm,由題意得:BP=tcm.,①當(dāng)∠APB為直角時(shí),如圖①,點(diǎn)P與點(diǎn)C重合,BP=BC=4cm,∴t=4;②當(dāng)∠BAP為直角時(shí),如圖②,BP=tcm.CP=(t-4)cm,AC=3cm,在Rt△ACP中,,在Rt△BAP中,,即,解得,答:當(dāng)△ABP為直角三角形時(shí),t=4或.【考點(diǎn)】本題考查了勾股定理以及直角三角形的知識(shí),解答本題的關(guān)鍵是掌握勾股定理的應(yīng)用,以及分類討論,否則會(huì)出現(xiàn)漏解.2、(1)見解析(2)DF的長為5.【解析】【分析】(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;(2)根據(jù)三角形的中線的定義以及直角三角形的性質(zhì)解答即可.(1)證明:∵DE⊥AC于點(diǎn)E,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=82+42=80,同理:CD2=20,∴AD2+CD2=80+20=100,∵AC=AE+CE=8+2=10,∴AC2=100,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC=90°;(2)解:∵AD是△ABC的中線,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=10,在Rt△ADB中,∠ADB=90°,∵點(diǎn)F是邊AB的中點(diǎn),∴DF=AB=5.∴DF的長為5.【考點(diǎn)】本題主要考查了直角三角形的性質(zhì)與判定,垂直平分線的判定和的性質(zhì),熟記勾股定理與逆定理是解答本題的關(guān)鍵.3、(1)見解析;(2)13【解析】【分析】根據(jù)題意可知,本題考查平行的性質(zhì),全等三角形的判定和勾股定理,根據(jù)判定定理,運(yùn)用兩直線平行內(nèi)錯(cuò)角相等再通過AAS以及勾股定理進(jìn)行求解.【詳解】解:(1)∵∴在△ABC和△DCE中∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考點(diǎn)】本題考查平行的性質(zhì),全等三角形的判定和勾股定理,熟練掌握判定定理運(yùn)用以及平行的性質(zhì)是解決此類問題的關(guān)鍵.4、(1)是,理由見解析;(2)2.5米.【解析】【分析】(1)先根據(jù)勾股定理逆定理證得Rt△CHB是直角三角形,然后根據(jù)點(diǎn)到直線的距離中,垂線段最短即可解答;(2)設(shè)AC=AB=x,則AH=x-1.8,在Rt△ACH中,根據(jù)勾股定理列方程求得x即可.【詳解】(1)∵,即,∴Rt△CHB是直角三角形,即CH⊥BH,∴CH是從村莊C到河邊的最近路(點(diǎn)到直線的距離中,垂線段最短);(2)設(shè)AC=AB=x,則AH=x-1.8,∵在Rt△ACH,∴,即,解得x=2.5,∴原來的路線AC的長為2.5米.【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,靈活應(yīng)用勾股定理的逆定理和定理是解答本題的關(guān)鍵.5、見解析【解析】【分析】連接AM得到三個(gè)直角三角形,運(yùn)用勾股定理分別表示出AD2、AM2、BM2進(jìn)行代換就可以最后得到所要證明的結(jié)果.【詳解】證明:連接MA,∵M(jìn)D⊥AB,∴AD2=AM2-MD2,BM2=BD2+M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論