長(zhǎng)春汽車工業(yè)高等??茖W(xué)?!吨悄軝C(jī)器人基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第1頁(yè)
長(zhǎng)春汽車工業(yè)高等??茖W(xué)校《智能機(jī)器人基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第2頁(yè)
長(zhǎng)春汽車工業(yè)高等??茖W(xué)?!吨悄軝C(jī)器人基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第3頁(yè)
長(zhǎng)春汽車工業(yè)高等專科學(xué)?!吨悄軝C(jī)器人基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第4頁(yè)
長(zhǎng)春汽車工業(yè)高等??茖W(xué)校《智能機(jī)器人基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

裝訂線裝訂線PAGE2第1頁(yè),共2頁(yè)長(zhǎng)春汽車工業(yè)高等??茖W(xué)校《智能機(jī)器人基礎(chǔ)》2024-2025學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的發(fā)展中,倫理和社會(huì)問(wèn)題受到越來(lái)越多的關(guān)注。假設(shè)一個(gè)城市正在考慮大規(guī)模部署自動(dòng)駕駛汽車。以下關(guān)于人工智能倫理問(wèn)題的描述,哪一項(xiàng)是錯(cuò)誤的?()A.自動(dòng)駕駛汽車在面臨道德困境時(shí),如選擇保護(hù)乘客還是行人,需要制定明確的決策規(guī)則B.人工智能的應(yīng)用可能導(dǎo)致部分工作崗位的消失,但同時(shí)也會(huì)創(chuàng)造新的就業(yè)機(jī)會(huì)C.只要人工智能技術(shù)能夠帶來(lái)便利和效率,就無(wú)需考慮其可能產(chǎn)生的倫理和社會(huì)影響D.數(shù)據(jù)隱私和安全是人工智能應(yīng)用中需要重點(diǎn)關(guān)注的倫理問(wèn)題,需要采取措施保護(hù)用戶的個(gè)人信息2、在人工智能的發(fā)展中,數(shù)據(jù)的質(zhì)量和數(shù)量對(duì)模型的性能有著重要影響。假設(shè)要訓(xùn)練一個(gè)高精度的圖像識(shí)別模型。以下關(guān)于數(shù)據(jù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.數(shù)據(jù)的多樣性和代表性對(duì)于模型的泛化能力至關(guān)重要B.大量的高質(zhì)量標(biāo)注數(shù)據(jù)通常能夠顯著提升模型的性能C.數(shù)據(jù)中的噪聲和錯(cuò)誤對(duì)模型的訓(xùn)練影響不大,可以忽略D.對(duì)數(shù)據(jù)進(jìn)行清洗、預(yù)處理和增強(qiáng)等操作可以提高數(shù)據(jù)質(zhì)量3、人工智能在金融領(lǐng)域的風(fēng)險(xiǎn)評(píng)估和欺詐檢測(cè)中發(fā)揮著重要作用。假設(shè)要構(gòu)建一個(gè)系統(tǒng)來(lái)檢測(cè)信用卡交易中的欺詐行為,需要實(shí)時(shí)分析交易數(shù)據(jù)和用戶行為模式。以下哪種技術(shù)或方法在處理這種實(shí)時(shí)、動(dòng)態(tài)的數(shù)據(jù)時(shí)最為有效?()A.實(shí)時(shí)數(shù)據(jù)分析和監(jiān)控B.離線批量處理和分析C.基于經(jīng)驗(yàn)的規(guī)則判斷D.隨機(jī)抽樣檢查4、強(qiáng)化學(xué)習(xí)在機(jī)器人控制中發(fā)揮著重要作用。假設(shè)一個(gè)機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于強(qiáng)化學(xué)習(xí)在該場(chǎng)景中的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過(guò)與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的行為策略B.設(shè)計(jì)合理的獎(jiǎng)勵(lì)函數(shù)對(duì)于機(jī)器人的學(xué)習(xí)效果至關(guān)重要C.強(qiáng)化學(xué)習(xí)可以使機(jī)器人快速適應(yīng)新的環(huán)境和任務(wù),無(wú)需重新訓(xùn)練D.機(jī)器人在學(xué)習(xí)過(guò)程中可能會(huì)經(jīng)歷多次失敗,但通過(guò)不斷嘗試最終能夠?qū)W會(huì)行走5、在人工智能的模型部署階段,需要考慮許多實(shí)際問(wèn)題。假設(shè)要將一個(gè)訓(xùn)練好的人工智能模型部署到移動(dòng)設(shè)備上,以下關(guān)于模型壓縮和優(yōu)化的方法,哪一項(xiàng)是不正確的?()A.采用量化技術(shù),減少模型的參數(shù)精度B.進(jìn)行模型剪枝,去除不重要的連接和神經(jīng)元C.直接將訓(xùn)練好的模型原封不動(dòng)地部署到移動(dòng)設(shè)備上,不進(jìn)行任何優(yōu)化D.使用知識(shí)蒸餾技術(shù),將復(fù)雜模型的知識(shí)遷移到較小的模型中6、在人工智能的語(yǔ)音識(shí)別任務(wù)中,環(huán)境噪聲和口音的多樣性會(huì)影響識(shí)別效果。假設(shè)要開發(fā)一個(gè)能夠在嘈雜環(huán)境和多種口音下準(zhǔn)確識(shí)別語(yǔ)音的系統(tǒng),以下哪種技術(shù)或方法在提高系統(tǒng)的適應(yīng)性方面最為關(guān)鍵?()A.聲學(xué)模型的優(yōu)化B.語(yǔ)言模型的融合C.多模態(tài)信息的利用D.以上方法結(jié)合使用7、在人工智能的模型評(píng)估中,除了準(zhǔn)確率和召回率等常見(jiàn)指標(biāo),以下哪種指標(biāo)對(duì)于衡量模型的性能也很重要?()A.F1值,綜合考慮準(zhǔn)確率和召回率B.均方誤差,用于回歸問(wèn)題C.混淆矩陣,詳細(xì)展示分類結(jié)果D.以上都是8、人工智能中的弱人工智能和強(qiáng)人工智能是兩個(gè)不同的概念。假設(shè)我們?cè)谟懻撊斯ぶ悄艿陌l(fā)展階段,以下關(guān)于弱人工智能和強(qiáng)人工智能的描述,哪一項(xiàng)是正確的?()A.弱人工智能已經(jīng)能夠像人類一樣思考和創(chuàng)造B.強(qiáng)人工智能目前已經(jīng)廣泛應(yīng)用于各個(gè)領(lǐng)域C.弱人工智能只能完成特定的任務(wù),不具備通用性D.區(qū)分弱人工智能和強(qiáng)人工智能的關(guān)鍵在于計(jì)算能力9、在人工智能的研究中,可解釋性是一個(gè)重要的問(wèn)題。假設(shè)一個(gè)醫(yī)療決策支持系統(tǒng)基于人工智能模型給出診斷建議。以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可解釋性有助于醫(yī)生和患者理解模型的決策依據(jù),增加信任度B.一些復(fù)雜的深度學(xué)習(xí)模型由于其內(nèi)部運(yùn)作的復(fù)雜性,往往具有較低的可解釋性C.為了提高模型的性能,可以犧牲一定的可解釋性D.可解釋性對(duì)于所有類型的人工智能應(yīng)用都是同等重要的,沒(méi)有優(yōu)先級(jí)之分10、在深度學(xué)習(xí)中,“批量歸一化(BatchNormalization)”的主要作用是?()A.加速訓(xùn)練B.防止過(guò)擬合C.提高模型精度D.以上都是11、人工智能是當(dāng)前科技領(lǐng)域的熱門話題,其應(yīng)用涵蓋了眾多領(lǐng)域。以下關(guān)于人工智能的定義,不準(zhǔn)確的是()A.人工智能是研究、開發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)B.人工智能是指讓計(jì)算機(jī)像人類一樣思考和行動(dòng),能夠自主地解決各種復(fù)雜問(wèn)題C.人工智能僅僅是通過(guò)大量的數(shù)據(jù)訓(xùn)練來(lái)實(shí)現(xiàn)對(duì)特定任務(wù)的預(yù)測(cè)和決策,不涉及對(duì)智能本質(zhì)的探索D.人工智能旨在創(chuàng)造出能夠感知環(huán)境、學(xué)習(xí)知識(shí)、進(jìn)行推理和決策,并能夠與人類進(jìn)行交互的智能體12、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大潛力。假設(shè)要利用人工智能技術(shù)實(shí)現(xiàn)農(nóng)作物的病蟲害監(jiān)測(cè),以下關(guān)于這種應(yīng)用的描述,正確的是:()A.可以通過(guò)分析農(nóng)作物的圖像和傳感器數(shù)據(jù),及時(shí)發(fā)現(xiàn)病蟲害的跡象B.人工智能系統(tǒng)能夠完全替代農(nóng)民的經(jīng)驗(yàn)和判斷,獨(dú)立完成病蟲害的防治工作C.由于農(nóng)作物生長(zhǎng)環(huán)境的復(fù)雜性,人工智能在病蟲害監(jiān)測(cè)中的應(yīng)用效果有限D(zhuǎn).安裝在農(nóng)田中的監(jiān)測(cè)設(shè)備越多,人工智能病蟲害監(jiān)測(cè)系統(tǒng)的準(zhǔn)確性就越高13、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領(lǐng)域發(fā)揮著重要作用。假設(shè)我們要在一個(gè)大型商場(chǎng)部署智能監(jiān)控系統(tǒng),以下關(guān)于智能監(jiān)控的功能,哪一項(xiàng)是不準(zhǔn)確的?()A.實(shí)時(shí)檢測(cè)異常行為B.自動(dòng)識(shí)別人員身份C.預(yù)測(cè)潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護(hù)問(wèn)題14、假設(shè)要開發(fā)一個(gè)能夠在虛擬環(huán)境中進(jìn)行自主探索和學(xué)習(xí)的人工智能體,例如在游戲中不斷提升能力,以下哪種學(xué)習(xí)機(jī)制和策略可能是關(guān)鍵的?()A.無(wú)監(jiān)督學(xué)習(xí)B.有監(jiān)督學(xué)習(xí)C.強(qiáng)化學(xué)習(xí)D.以上都是15、在人工智能的圖像分割任務(wù)中,需要將圖像劃分成不同的區(qū)域。假設(shè)要對(duì)醫(yī)學(xué)影像中的病變區(qū)域進(jìn)行分割,以下關(guān)于圖像分割技術(shù)的描述,正確的是:()A.傳統(tǒng)的圖像分割方法在處理復(fù)雜的醫(yī)學(xué)影像時(shí)效果總是優(yōu)于深度學(xué)習(xí)方法B.深度學(xué)習(xí)中的全卷積神經(jīng)網(wǎng)絡(luò)(FCN)在醫(yī)學(xué)圖像分割中能夠自動(dòng)學(xué)習(xí)特征,具有很大的潛力C.圖像分割的結(jié)果只取決于所使用的算法,與圖像的質(zhì)量和分辨率無(wú)關(guān)D.圖像分割技術(shù)在醫(yī)學(xué)領(lǐng)域的應(yīng)用已經(jīng)非常成熟,不需要進(jìn)一步的研究和改進(jìn)16、在一個(gè)利用人工智能進(jìn)行天氣預(yù)報(bào)的系統(tǒng)中,為了提高預(yù)測(cè)的精度和時(shí)效性,以下哪個(gè)因素可能是需要重點(diǎn)關(guān)注和改進(jìn)的?()A.氣象數(shù)據(jù)的質(zhì)量和多樣性B.模型的復(fù)雜度和計(jì)算效率C.模型的融合和集成D.以上都是17、人工智能中的計(jì)算機(jī)視覺(jué)技術(shù)能夠讓計(jì)算機(jī)理解和分析圖像和視頻內(nèi)容。以下關(guān)于計(jì)算機(jī)視覺(jué)的描述,不準(zhǔn)確的是()A.目標(biāo)檢測(cè)、圖像分類和語(yǔ)義分割是計(jì)算機(jī)視覺(jué)中的常見(jiàn)任務(wù)B.計(jì)算機(jī)視覺(jué)技術(shù)可以應(yīng)用于自動(dòng)駕駛、安防監(jiān)控和工業(yè)檢測(cè)等領(lǐng)域C.計(jì)算機(jī)視覺(jué)系統(tǒng)的性能完全取決于所使用的硬件設(shè)備,算法的優(yōu)化作用不大D.深度學(xué)習(xí)算法的出現(xiàn)極大地推動(dòng)了計(jì)算機(jī)視覺(jué)技術(shù)的發(fā)展18、在人工智能的發(fā)展趨勢(shì)中,邊緣計(jì)算與人工智能的結(jié)合越來(lái)越受到關(guān)注。假設(shè)我們要在物聯(lián)網(wǎng)設(shè)備上實(shí)現(xiàn)實(shí)時(shí)的人工智能推理,以下關(guān)于邊緣計(jì)算與人工智能融合的描述,哪一項(xiàng)是不正確的?()A.可以減少數(shù)據(jù)傳輸延遲,提高響應(yīng)速度B.能夠降低對(duì)云計(jì)算中心的依賴C.邊緣設(shè)備的計(jì)算能力足以處理所有復(fù)雜的人工智能任務(wù)D.需要考慮能源消耗和設(shè)備成本等因素19、在人工智能的圖像語(yǔ)義分割任務(wù)中,需要將圖像中的每個(gè)像素分配到不同的類別,例如將一幅街景圖像中的道路、建筑物、車輛等區(qū)分開來(lái)。假設(shè)圖像中的物體邊界模糊、類別多樣,以下哪種方法能夠提高語(yǔ)義分割的精度?()A.使用更高分辨率的圖像進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的分割算法,降低計(jì)算復(fù)雜度C.忽略物體邊界的像素,只關(guān)注主要區(qū)域D.不進(jìn)行任何預(yù)處理,直接對(duì)原始圖像進(jìn)行分割20、在自然語(yǔ)言處理中,詞向量是一種重要的表示方法。假設(shè)要對(duì)一段文本進(jìn)行語(yǔ)義分析,使用詞向量模型。以下關(guān)于詞向量的描述,正確的是:()A.詞向量的維度越高,對(duì)詞語(yǔ)的表示就越精確,不會(huì)出現(xiàn)語(yǔ)義混淆B.不同的詞向量模型,如Word2Vec和GloVe,生成的詞向量不能相互轉(zhuǎn)換和比較C.詞向量可以捕捉詞語(yǔ)之間的語(yǔ)義關(guān)系,例如相似性和相關(guān)性D.詞向量一旦生成就固定不變,不能根據(jù)新的文本數(shù)據(jù)進(jìn)行更新和優(yōu)化21、在自然語(yǔ)言處理中,機(jī)器翻譯是一個(gè)重要的研究方向。假設(shè)要開發(fā)一個(gè)能夠在多種語(yǔ)言之間進(jìn)行高質(zhì)量翻譯的系統(tǒng)。以下關(guān)于機(jī)器翻譯技術(shù)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.基于規(guī)則的機(jī)器翻譯依靠人工編寫的語(yǔ)法和詞匯規(guī)則進(jìn)行翻譯B.統(tǒng)計(jì)機(jī)器翻譯通過(guò)對(duì)大量雙語(yǔ)語(yǔ)料的統(tǒng)計(jì)分析來(lái)學(xué)習(xí)翻譯模式C.神經(jīng)機(jī)器翻譯利用深度神經(jīng)網(wǎng)絡(luò)模型,能夠生成更自然流暢的翻譯結(jié)果D.現(xiàn)有的機(jī)器翻譯技術(shù)已經(jīng)能夠完美處理各種領(lǐng)域和文體的文本,無(wú)需人工干預(yù)和修正22、在人工智能的強(qiáng)化學(xué)習(xí)中,探索與利用的平衡是一個(gè)關(guān)鍵問(wèn)題。假設(shè)一個(gè)智能體在一個(gè)未知的環(huán)境中學(xué)習(xí),既要充分探索新的策略,又要利用已有的有效策略。以下哪種策略在平衡探索與利用方面表現(xiàn)較好?()A.ε-貪心策略B.基于置信上限的策略C.隨機(jī)策略D.固定策略23、在人工智能的模型評(píng)估中,需要選擇合適的指標(biāo)來(lái)衡量模型的性能。假設(shè)一個(gè)圖像分類模型,以下關(guān)于模型評(píng)估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一重要的評(píng)估指標(biāo),其他指標(biāo)如召回率和F1值都不重要B.對(duì)于不平衡的數(shù)據(jù)集,準(zhǔn)確率可能會(huì)產(chǎn)生誤導(dǎo),應(yīng)該使用更合適的指標(biāo)如召回率和F1值C.模型評(píng)估指標(biāo)只與模型的架構(gòu)有關(guān),與數(shù)據(jù)分布無(wú)關(guān)D.選擇評(píng)估指標(biāo)時(shí)不需要考慮具體的應(yīng)用場(chǎng)景和需求24、在人工智能的研究中,模型的評(píng)估指標(biāo)對(duì)于衡量模型性能非常重要。假設(shè)要評(píng)估一個(gè)圖像分類模型的性能。以下關(guān)于評(píng)估指標(biāo)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.準(zhǔn)確率是常用的評(píng)估指標(biāo)之一,表示正確分類的樣本比例B.召回率衡量了模型能夠正確識(shí)別正例的能力C.F1分?jǐn)?shù)綜合考慮了準(zhǔn)確率和召回率,是一個(gè)更全面的評(píng)估指標(biāo)D.只要模型的準(zhǔn)確率高,就說(shuō)明模型在實(shí)際應(yīng)用中一定表現(xiàn)良好25、在人工智能的研究中,模型的壓縮和量化技術(shù)可以減少模型的參數(shù)和計(jì)算量。以下關(guān)于模型壓縮和量化的敘述,不準(zhǔn)確的是()A.可以通過(guò)剪枝、量化和低秩分解等方法實(shí)現(xiàn)模型壓縮B.模型壓縮和量化會(huì)導(dǎo)致模型性能的一定損失,但可以在可接受范圍內(nèi)提高計(jì)算效率C.模型壓縮和量化技術(shù)只適用于小型模型,對(duì)于大型復(fù)雜模型效果不佳D.這些技術(shù)對(duì)于在資源受限的設(shè)備上部署人工智能模型具有重要意義26、人工智能在教育領(lǐng)域有潛在的應(yīng)用,例如個(gè)性化學(xué)習(xí)系統(tǒng)。假設(shè)要為學(xué)生提供個(gè)性化的學(xué)習(xí)路徑,以下哪種數(shù)據(jù)對(duì)于系統(tǒng)的設(shè)計(jì)最為關(guān)鍵?()A.學(xué)生的考試成績(jī)B.學(xué)生的學(xué)習(xí)時(shí)間C.學(xué)生的學(xué)習(xí)風(fēng)格和偏好D.學(xué)校的課程設(shè)置27、在人工智能的圖像識(shí)別領(lǐng)域,除了卷積神經(jīng)網(wǎng)絡(luò),還有其他一些方法和技術(shù)。假設(shè)我們要對(duì)衛(wèi)星圖像中的地物進(jìn)行分類,以下哪種方法可能會(huì)與卷積神經(jīng)網(wǎng)絡(luò)結(jié)合使用,以提高分類效果?()A.支持向量機(jī)B.決策樹C.聚類分析D.以上都有可能28、當(dāng)利用人工智能進(jìn)行藥物研發(fā),例如預(yù)測(cè)藥物分子的活性和副作用,以下哪種技術(shù)和數(shù)據(jù)可能是重要的支撐?()A.化學(xué)信息學(xué)和分子模擬B.生物醫(yī)學(xué)數(shù)據(jù)和機(jī)器學(xué)習(xí)C.藥物臨床試驗(yàn)數(shù)據(jù)和統(tǒng)計(jì)分析D.以上都是29、在人工智能的發(fā)展歷程中,深度學(xué)習(xí)技術(shù)的出現(xiàn)帶來(lái)了重大突破。假設(shè)我們正在研究圖像識(shí)別任務(wù),需要對(duì)大量的圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以識(shí)別不同的物體和場(chǎng)景。深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在處理圖像數(shù)據(jù)時(shí)具有獨(dú)特的優(yōu)勢(shì)。那么,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.能夠自動(dòng)提取圖像的特征,減少了人工特征工程的工作量B.可以處理任意大小的圖像輸入,無(wú)需對(duì)圖像進(jìn)行預(yù)處理C.其訓(xùn)練過(guò)程需要大量的計(jì)算資源和時(shí)間D.對(duì)于復(fù)雜的圖像分類任務(wù),準(zhǔn)確率通常高于傳統(tǒng)機(jī)器學(xué)習(xí)算法30、在人工智能的發(fā)展過(guò)程中,可解釋性是一個(gè)重要的問(wèn)題。假設(shè)一個(gè)深度學(xué)習(xí)模型在醫(yī)療診斷中做出了關(guān)鍵決策,但無(wú)法解釋其決策的依據(jù)。這可能會(huì)帶來(lái)哪些潛在的風(fēng)險(xiǎn)?()A.醫(yī)生可能無(wú)法信任模型的結(jié)果B.模型的準(zhǔn)確率可能會(huì)下降C.模型的訓(xùn)練時(shí)間可能會(huì)增加D.模型的復(fù)雜度可能會(huì)降低二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用聚類算法對(duì)生物醫(yī)學(xué)數(shù)據(jù)進(jìn)行分析,發(fā)現(xiàn)不同的疾病亞型和治療反應(yīng),為個(gè)性化醫(yī)療提供更精準(zhǔn)的支持。2、(本題5分)使用Python中的PyTorch框架,構(gòu)建一個(gè)圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)模型,對(duì)社交網(wǎng)絡(luò)數(shù)據(jù)進(jìn)行分析。通過(guò)分析節(jié)點(diǎn)之間的關(guān)系,預(yù)測(cè)用戶的行為或關(guān)系。3、(本題5分)運(yùn)用深度學(xué)習(xí)框架構(gòu)建一個(gè)圖像分類模型,對(duì)衛(wèi)星圖像中的自然災(zāi)害進(jìn)行分類,如洪水、火災(zāi)等。4、(本題5分)借助遺傳算法優(yōu)化一個(gè)物流配送問(wèn)題,考慮交通擁堵、路況等因素,提高配送的效率和可靠性。5、(本題5分)使用Python的Keras庫(kù),構(gòu)建一個(gè)基于深度神經(jīng)網(wǎng)絡(luò)的圖像去噪模型。對(duì)含有噪聲的圖像進(jìn)行去噪處理,比較不同模型

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論