版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
京改版數學9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、已知點在半徑為8的外,則(
)A. B. C. D.2、若為銳角,,則等于(
)A. B. C. D.3、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數為(
)A.160o B.120o C.100o D.80o4、如圖,線段,點是線段的黃金分割點(且),點是線段的黃金分割點(),點是線段的黃金分割點依此類推,則線段的長度是(
)A. B. C. D.5、關于函數,下列說法:①函數的最小值為1;②函數圖象的對稱軸為直線x=3;③當x≥0時,y隨x的增大而增大;④當x≤0時,y隨x的增大而減小,其中正確的有()個.A.1 B.2 C.3 D.46、對于函數的圖象,下列說法不正確的是(
)A.開口向下 B.對稱軸是直線C.最大值為 D.與軸不相交二、多選題(7小題,每小題2分,共計14分)1、季是呼吸道疾病多發(fā)的季節(jié),為預防病毒的傳播,某學校用藥熏消毒法對教室進行消毒,已知藥物釋放過程中,教室內每立方米空氣中含藥量與時間成正比例;藥物釋放完畢后,y與t成反比例,如圖所示.空氣中的含藥量低于時對身體無害.則下列選項正確的是(
)A.藥物釋放過程中,y與t的函數表達式是B.藥物的釋放過程需要2hC.從開始消毒,6h后空氣中的含藥量低于D.空氣中含藥量不低于的時長為6h2、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(
)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB3、利用反例可以判斷一個命題是錯誤的,下列命題錯誤的是(
)A.若,則 B.對角線相等的四邊形是矩形C.函數的圖象是中心對稱圖形 D.六邊形的外角和大于五邊形的外角和4、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°5、如圖,在△ABC中,點D在邊AC上,下列條件中,不能判斷△BDC與△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA6、如圖,在△ABC中,D,E分別是邊AB,AC上的點,DE∥BC,AD:DB=2:1,下列結論中正確的是()A. B.C. D.AD?AB=AE?AC7、已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數關系,它的圖象如圖所示.下列說法正確的是(
)A.函數解析式為I= B.當R=9Ω時,I=4AC.蓄電池的電壓是13V D.當I≤10A時,R≥3.6Ω第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、圖1是一種手機托架,使用該手機托架示意圖如圖3所示,底部放置手機處寬AB1.2厘米,托架斜面長BD6厘米,它有C到F共4個檔位調節(jié)角度,相鄰兩個檔位間的距離為0.8厘米,檔位C到B的距離為2.4厘米.將某型號手機置于托架上(圖2),手機屏幕長AG是15厘米,O是支點且OBOE2.5厘米(支架的厚度忽略不計).當支架調到E檔時,點G離水平面的距離GH為__________cm.2、在每個小正方形的邊長為1的網格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.3、如圖是二次函數和一次函數y2=kx+t的圖象,當y1≥y2時,x的取值范圍是_____.4、將二次函數化成一般形式,其中二次項系數為________,一次項系數為________,常數項為________.5、二次函數的部分圖象如圖所示,由圖象可知,方程的解為___________________;不等式的解集為___________________.6、如圖,已知P是函數y1圖象上的動點,當點P在x軸上方時,作PH⊥x軸于點H,連接PO.小華用幾何畫板軟件對PO,PH的數量關系進行了探討,發(fā)現PO﹣PH是個定值,則這個定值為_____.7、小明的身高為1.6,他在陽光下的影長為2,此時他旁邊的旗桿的影長為15,則旗桿的高度為_______.四、解答題(6小題,每小題10分,共計60分)1、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結,在第一象限內的拋物線上,是否存在一點,使的面積最大?最大面積是多少?2、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當BD的長是多少時,圖中的兩個直角三角形相似?3、如圖,在△ABC中,AB=AC,點P在BC上.(1)求作:△PCD,使點D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.4、如圖,小明家窗外有一堵圍墻AB,由于圍墻的遮擋,清晨太陽光恰好從窗戶的最高點C射進房間的地板F處,中午太陽光恰好能從窗戶的最低點D射進房間的地板E處,小明測得窗子距地面的高度OD=1m,窗高CD=1.5m,并測得OE=1m,OF=5m,求圍墻AB的高度.5、已知:.(1)求代數式的值;(2)如果,求的值.6、如圖1,某同學家的一面窗戶上安裝有遮陽篷,圖2和圖3是截面示意圖,CD是遮陽篷,窗戶AB為1.5米,BC為0.5米.該遮陽篷有伸縮功能.如圖2,該同學在夏季某日的正午時刻測得太陽光和水平線的夾角為60°,遮陽篷CD正好將進入窗戶AB的陽光擋??;如圖3,該同學在冬季某日的正午時刻測得太陽光和水平線的夾角為30°,將遮陽篷收縮成CD′時,遮陽篷正好完全不擋進入窗戶AB的陽光.(1)計算圖3中CD′的長度比圖2中CD的長度收縮了多少米;(結果保留根號)(2)如果圖3中遮陽篷的長度為圖2中CD的長度,請計算該遮陽篷落在窗戶AB上的陰影長度為多少米?(請在圖3中畫圖并標出相應字母,然后再計算)-參考答案-一、單選題1、A【解析】【分析】根據點P與⊙O的位置關系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關系,關鍵是要牢記判斷點與圓的位置關系的方法.2、B【解析】【分析】根據tan45°=1求出即可.【詳解】∵∠A為銳角,tanA=1,∴∠A=45°.故選B.【考點】本題考查了特殊角的三角函數值,主要考查學生的記憶能力和計算能力.3、A【解析】【分析】在⊙O取點,連接利用圓的內接四邊形的性質與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內接四邊形,.故選A【考點】本題考查的是圓的內接四邊形的性質,同弧所對的圓心角是它所對的圓周角的2倍,掌握相關知識點是解題的關鍵.4、C【解析】【分析】根據把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,它們的比值叫做黃金比進行解答即可.【詳解】解:根據黃金比的比值,,則,…依此類推,則線段,故選C.【考點】本題考查的是黃金分割的知識,理解黃金分割的概念,找出黃金分割中成比例的對應線段是解決問題的關鍵.5、B【解析】【分析】根據所給函數的頂點式得出函數圖象的性質從而判斷選項的正確性.【詳解】解:∵,∴該函數圖象開口向上,有最小值1,故①正確;函數圖象的對稱軸為直線,故②錯誤;當x≥0時,y隨x的增大而增大,故③正確;當x≤﹣3時,y隨x的增大而減小,當﹣3≤x≤0時,y隨x的增大而增大,故④錯誤.故選:B.【考點】本題考查二次函數的性質,解題的關鍵是能夠根據函數解析式分析出函數圖象的性質.6、D【解析】【分析】根據二次函數的性質,進行判斷,即可得到答案.【詳解】解:∵,則開口向下,故A正確;對稱軸是直線,故B正確;當,y有最大值k,故C正確;當,,與y軸肯定有交點,故D錯誤;故選擇:D.【考點】本題考查了二次函數的性質,解題的關鍵是熟記二次函數的性質.二、多選題1、AC【解析】【分析】根據題意及圖象先確定反比例函數解析式及正比例函數解析式,然后根據題意對各選項進行判斷即可.【詳解】解:A、藥物釋放完畢后,y與t成反比例,設,由圖象可得經過點,∴k=3×,∴,當y=1時,t=,∴正比例函數經過點,設正比例函數解析式為y=at,將點代入求得:a=,∴正比例函數解析式為y=t,故A正確;B、由A選項可得,當t=時,y達到最大為1,故B錯誤;C、當t=6時,代入反比例函數可得:,∴6h后空氣中的含藥量低于0.25mg/m3,故C正確;D、根據圖象及C選項可得:空氣中含藥量不低于0.25mg/m3的時長小于6h,故D錯誤;故選:AC.【考點】題目主要考查一次函數與反比例函數的綜合應用,理解題意,確定出一次函數與反比例函數解析式是解題關鍵.2、ABC【解析】【分析】根據相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關鍵.3、ABD【解析】【分析】根據有理數的乘法、矩形的判定定理、反比例函數的性質、多邊形的外角性質逐一判斷即可.【詳解】解:A、當b=0,a≠0時,則,該選項符合題意;B、如圖:四邊形ABCD的對角線AC=BD,但四邊形ABCD不是矩形,該選項符合題意;C、函數的圖象是中心對稱圖形,該選項不符合題意;D、多邊形的外角和都相等,等于360°,該選項符合題意;故選:ABD.【考點】本題考查了命題與定理的知識,解題的關鍵是了解判斷一個命題是假命題的時候可以舉出反例.4、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關性質的綜合應用,在本題中借用切線的性質,求得相應角的度數是解題的關鍵.5、ABD【解析】【分析】根據三角形相似的判斷方法逐個判斷即可.【詳解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合題意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合題意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故選項不符合題意;D、BD2=CD·DA,不能判定△BDC與△ABC,符合題意;故選:ABD.【考點】此題考查了三角形相似的判定方法,解題的關鍵是熟練掌握三角形相似的判定方法.6、ABC【解析】【分析】由DE∥BC,AD:DB=2:1,可得△ADE∽△ABC,推出,,推出,由此即可判斷;【詳解】解:∵DE∥BC,AD:DB=2:1,∴△ADE∽△ABC,∴,,∴,∴選項A、B、C正確,∵DE∥BC,∴,選項D錯誤,故選:ABC.【考點】本題考查了平行線分線段成比例定理,相似三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識.7、BD【解析】【分析】設函數解析式為,將點(4,9)代入判斷A錯誤;將R=9Ω代入判斷B正確;由解析式判斷C錯誤;由函數性質判斷D正確.【詳解】解:設函數解析式為,將點(4,9)代入,得,∴函數解析式為,故A錯誤;當R=9Ω時,I=4A,故B正確;蓄電池的電壓是36V,故C錯誤;∵39>0,∴I隨R的增大而減小,∴當I≤10A時,R≥3.6Ω,故D正確;故選:BD.【考點】此題考查了求反比例函數解析式,反比例函數的增減性,已知自變量求函數值的大小,正確掌握反比例函數的綜合知識是解題的關鍵.三、填空題1、【解析】【分析】如圖3中,作DT⊥AH于T,OK⊥BD于K.解直角三角形求出BK,OK,利用相似三角形的性質求出DT,BT,AD,即可求出GH的長.【詳解】如圖3中,作DT⊥AH于T,OK⊥BD于K.∵OB=OE=2.5cm,BE=2.4+0.82=4(cm),OK⊥BE,∴BK=KE=2(cm),∴OK(cm),∵∠OBK=∠DBT,∠OKB=∠BTD=90°,∴△BKO∽△BTD,∴,∴,∴BT=4.8(cm),DT=3.6(cm),AT=1.2+4.8=6(cm),∴AD=(cm),∵DT∥GH,∴△ATD∽△AHG,∴,∴,∴(cm).故答案為:.【考點】本題考查了相似三角形的應用,勾股定理的應用等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考填空題中的壓軸題.2、5【解析】【分析】根據相似三角形的性質確定兩直角邊的比值為1:2,以及6×6網格圖形中,最長線段為6,進行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應用與設計、相似三角形的判定和性質、勾股定理等知識,解題的關鍵是學會利用數形結合的思想解決問題,屬于中考填空題中的壓軸題.3、﹣1≤x≤2【解析】【分析】根據圖象可以直接回答,使得y1≥y2的自變量x的取值范圍就是直線y1=kx+m落在二次函數y2=ax2+bx+c的圖象上方的部分對應的自變量x的取值范圍.【詳解】根據圖象可得出:當y1≥y2時,x的取值范圍是:﹣1≤x≤2.故答案為:﹣1≤x≤2.【考點】本題考查了二次函數的性質.本題采用了“數形結合”的數學思想,使問題變得更形象、直觀,降低了題的難度.4、
【解析】【分析】通過去括號,移項,可以把方程化成二次函數的一般形式,然后確定二次項系數,一次項系數,常數項.【詳解】y=﹣2(x﹣2)2變形為:y=﹣2x2+8x﹣8,所以二次項系數為﹣2;一次項系數為8;常數項為﹣8.故答案為﹣2,8,﹣8.【考點】本題考查的是二次函數的一般形式,通過去括號,移項,合并同類項,得到二次函數的一般形式,確定二次項系數,一次項系數,常數項的值.5、
,
或【解析】【分析】根據拋物線的對稱軸和拋物線與x軸一個交點求出另一個交點,再通過二次函數與方程的兩根,二次函數與不等式解集的關系求得答案.【詳解】∵拋物線的對稱軸為,拋物線與x軸一個交點為(5,0)∴拋物線與x軸另一個交點為(-1,0)∴方程的解為:,由圖像可知,不等式的解集為:或.故答案為:,;或.【考點】本題考查了二次函數的圖像性質,掌握二次函數與方程的兩根,二次函數與不等式的解集關系,是解決問題的關鍵.6、2【解析】【分析】設p(x,x2-1),則OH=|x|,PH=|x2-1|,因點P在x軸上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【詳解】解:設p(x,x2-1),則OH=|x|,PH=|x2-1|,當點P在x軸上方時,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案為:2.【考點】本題考查二次函數圖象上點的坐標特征,勾股定理,利用坐標求線段長度是解題的關鍵.7、12【解析】【分析】設這根旗桿的高度為xm,利用某一時刻物體的高度與它的影長的比相等得到,然后利用比例性質求x即可.【詳解】設這根旗桿的高度為xm,根據題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點】本題考查了相似三角形的應用:利用影長測量物體的高度;利用相似測量河的寬度(測量距離);借助標桿或直尺測量物體的高度.四、解答題1、(1);(2)存在,當時,面積最大為16,此時點點坐標為.【解析】【分析】(1)用待定系數法解答便可;(2)設點的坐標為,連結、、.根據對稱性求出點B的坐標,根據得到二次函數關系式,最后配方求解即可.【詳解】解:(1)∵拋物線過點,∴.∵拋物線的對稱軸為直線,∴可設拋物線為.∵拋物線過點,∴,解得.∴拋物線的解析式為,即.(2)存在,設點的坐標為,連結、、.∵點A、關于直線對稱,且∴.∴.∵∴當時,面積最大為16,此時點點坐標為.【考點】本題主要考查了二次函數的圖象與性質,待定系數法,三角形面積公式以及二次函數的最值求法,根據圖形得出由此得出二次函數關系式是解答此題的關鍵.2、當BD的長是或時,圖中的兩個直角三角形相似【解析】【分析】先利用勾股定理計算出BC=3,再根據相似三角形的判定方法進行討論:當時,Rt△DBA∽Rt△BCA,即,當時,Rt△DBA∽Rt△BAC,即,然后利用比例性質求出對應的BD的長即可.【詳解】在Rt△ABC中,BC3.∵∠ABC=∠ADB=90°,∴分兩種情況討論:①當時,Rt△DBA∽Rt△BCA,即,解得:BD;②當時,Rt△DBA∽Rt△BAC,即,解得:BD.綜上所述:當BD的長是或時,圖中的兩個直角三角形相似.【考點】本題考查了相似三角形的判定:兩組對應邊的比相等且夾角對應相等的兩個三角形相似.3、(1)見解析;(2)見解析【解析】【分析】(1)根據相似三角形的性質可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD與AC的交點為D即可;(2)利用外角的性質以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根據平行線的判定即可.【詳解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如圖,即為所作圖形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC,∴∠BAP=∠CPD=∠ABC,即∠CPD=∠ABC,∴PD∥AB.【考點】本題考查了尺規(guī)作圖,相似三角形的性質,外角的性質,難度不大,解題的關鍵是掌握尺規(guī)作圖的基本作法.4、4m【解析】【分析】首先根據DO=OE=1m,可得∠DEB=45°,然后證明AB=BE,再證明△AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年興業(yè)銀行天津分行校園招聘備考題庫及答案詳解參考
- 中國科學院武漢病毒研究所第四季度集中招聘20人備考題庫及參考答案詳解
- 2025年寧波國有資本研究院有限公司招聘5人備考題庫及參考答案詳解
- 2026年及未來5年市場數據中國草銨膦行業(yè)市場前景預測及投資方向研究報告
- 2025年及未來5年市場數據中國牽引變壓器行業(yè)市場供需格局及行業(yè)前景展望報告
- 2026年及未來5年市場數據中國粘膠基碳纖維行業(yè)市場調研分析及投資戰(zhàn)略規(guī)劃報告
- 2025年及未來5年市場數據中國制粒干燥機行業(yè)市場供需格局及行業(yè)前景展望報告
- 交通基礎安全管理處置 5
- 2025年科技園區(qū)企業(yè)服務平臺建設項目可行性研究報告
- 2025年新能源汽車產業(yè)鏈項目可行性研究報告
- 低碳飲食課件
- 前列腺癌癥課件
- 高校課程資源庫建設方案與管理辦法
- 2025年海運代理招聘面試題庫及參考答案
- 三國司馬懿課件
- 匯元小區(qū)選房通知書
- 老舊排污管道更換施工方案設計
- 與認知障礙老年人溝通
- 2025年國家基本公共衛(wèi)生服務項目考核試卷及答案
- 《成都市智能建造人工智能(AI)應用指南(2025版)》
- 影視企業(yè)會計實務操作指南
評論
0/150
提交評論