難點解析-烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測試試題(含解析)_第1頁
難點解析-烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測試試題(含解析)_第2頁
難點解析-烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測試試題(含解析)_第3頁
難點解析-烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測試試題(含解析)_第4頁
難點解析-烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測試試題(含解析)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

烏龍木齊第四中學(xué)7年級數(shù)學(xué)下冊第四章三角形同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm2、如圖,已知∠BAC=∠ABD=90°,AD和BC相交于O.在①AC=BD;②BC=AD;③∠C=∠D;④OA=OB.條件中任選一個,可使△ABC≌△BAD.可選的條件個數(shù)為()A.1 B.2 C.3. D.43、下列長度的各組線段中,能組成三角形的是()A.1,2,3 B.2,3,5 C.3,4,8 D.3,4,54、以下列長度的三條線段為邊,能組成三角形的是()A. B. C. D.5、如圖,∠BAD=90°,AC平分∠BAD,CB=CD,則∠B與∠ADC滿足的數(shù)量關(guān)系為()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°6、如圖,已知△ABC中,AB=AC,∠A=72°,D為BC上一點,在AB上取BF=CD,AC上取CE=BD,則∠FDE的度數(shù)為()A.54° B.56° C.64° D.66°7、如圖,在△ABC中,BC邊上的高為()A.AD B.BE C.BF D.CG8、如圖,BD是△ABC的中線,AB=6,BC=4,△ABD和△BCD的周長差為()A.2 B.4 C.6 D.109、如圖,已知△ABC,下面甲、乙、丙、丁四個三角形中,與△ABC全等的是()A. B.C. D.10、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、在平面直角坐標(biāo)系中,點B(0,4),點A為x軸上一動點,連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時針方向排列,且∠BAE為直角),連接OE.當(dāng)OE最小時,點E的縱坐標(biāo)為______.2、如圖,△ABE≌△ACD,∠A=60°,∠B=20°,則∠DOE的度數(shù)為_____°.3、如圖,△ABC三個內(nèi)角的平分線交于點O,點D在AB的延長線上,AD=AC,BD=BO,若∠ACB=40°,則∠ABC的度數(shù)為_____.4、圖①是將木條用釘子釘成的四邊形和三角形木架,拉動木架,觀察圖②中的變動情況,說一說,其中所蘊含的數(shù)學(xué)原理是_____.5、一個零件的形狀如圖,按規(guī)定∠A=90°,∠B=∠D=25°,判斷這個零件是否合格,只要檢驗∠BCD的度數(shù)就可以了.量得∠BCD=150°,這個零件______(填“合格”不合格”).6、如圖,AB,CD相交于點O,,請你補充一個條件,使得,你補充的條件是______.7、已知,如圖,AB=AC,AD=AE,BE與CD相交于點P,則下列結(jié)論:①PC=PB;②∠CAP=∠BAP;③∠PAB=∠B;④共有4對全等三角形;正確的是_____(請?zhí)顚懶蛱枺?、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D,己知DE=4,AD=6,則BE的長為___.9、如圖,AB=DE,AC=DF,BF=CE,點B、F、C、E在一條直線上,AB=4,EF=6,求△ABC中AC邊的取值范圍.10、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數(shù)式表示).三、解答題(6小題,每小題10分,共計60分)1、直線l經(jīng)過點A,在直線l上方,.(1)如圖1,,過點B,C作直線l的垂線,垂足分別為D、E.求證:(2)如圖2,D,A,E三點在直線l上,若(為任意銳角或鈍角),猜想線段DE、BD、CE有何數(shù)量關(guān)系?并給出證明.(3)如圖3,過點B作直線l上的垂線,垂足為F,點D是BF延長線上的一個動點,連結(jié)AD,作,使得,連結(jié)DE,CE.直線l與CE交于點G.求證:G是CE的中點.2、已知銳角,,于,于F,交于E.求證:ΔBDE≌若BD=8,DC=6,求線段BE的長度.3、如圖,點E、A、C在同一直線上,AB∥CD,∠B=∠E,AC=CD.求證:BC=ED.4、下面是“作一個角的平分線”的尺規(guī)作圖過程.已知:如圖,鈍角.求作:射線OC,使.作法:如圖,①在射線OA上任取一點D;②以點О為圓心,OD長為半徑作弧,交OB于點E;③分別以點D,E為圓心,大于長為半徑作弧,在內(nèi),兩弧相交于點C;④作射線OC.則OC為所求作的射線.完成下面的證明.證明:連接CD,CE由作圖步驟②可知______.由作圖步驟③可知______.∵,∴.∴(________)(填推理的依據(jù)).5、已知,∠A=∠D,BC平分∠ABD,求證:AC=DC.6、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長-參考答案-一、單選題1、C【分析】設(shè)三角形第三邊的長為xcm,再根據(jù)三角形的三邊關(guān)系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設(shè)三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關(guān)系的應(yīng)用.此類求三角形第三邊的范圍的題,實際上就是根據(jù)三角形三邊關(guān)系定理列出不等式,然后解不等式即可.2、D【分析】先得到∠BAC=∠ABD=90°,若添加AC=BD,則可根據(jù)“SAS”判斷△ABC≌△BAD;若添加BC=AD,則可利用“HL”證明Rt△ABC≌Rt△BAD,若添加∠C=∠D,則可利用“AAS”證明△ABC≌△BAD;若添加OA=OB,可先根據(jù)“ASA”證明△AOC≌△BOD得∠C=∠D,則可利用“AAS”證明△ABC≌△BAD.【詳解】解:在△ABC和△BAD中,∴△ABC≌△BAD故選AC=BD可使△ABC≌△BAD.∵∠BAC=∠ABD=90°,∴△ABC和△BAD均為直角三角形在Rt△ABC和Rt△BAD中,∴Rt△ABC≌Rt△BAD故選BC=AD可使△ABC≌△BAD.在△ABC和△BAD中,∴△ABC≌△BAD故選∠C=∠D可使△ABC≌△BAD.∵OA=OB∴∵∠BAC=∠ABD=90°,∴在△AOC和△BOD中,∴△AOC≌△BOD∴在△ABC和△BAD中,∴△ABC≌△BAD故選OA=OB可使△ABC≌△BAD.∴可選的條件個數(shù)有4個故選:D【點睛】本題考查了全等三角形的判定:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”.3、D【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊判斷即可.【詳解】∵1+2=3,∴A不能構(gòu)成三角形;∵3+2=5,∴B不能構(gòu)成三角形;∵3+4<8,∴C不能構(gòu)成三角形;∵∵3+4>5,∴D能構(gòu)成三角形;故選D.【點睛】本題考查了三角形的三邊關(guān)系定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.4、D【分析】根據(jù)三角形的三邊關(guān)系,即可求解.【詳解】解:A、因為,所以不能構(gòu)成三角形,故本選項不符合題意;B、因為,所以不能構(gòu)成三角形,故本選項不符合題意;C、因為,所以不能構(gòu)成三角形,故本選項不符合題意;D、因為,所以能構(gòu)成三角形,故本選項符合題意;故選:D【點睛】本題主要考查了三角形的三邊關(guān)系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關(guān)鍵.5、C【分析】由題意在射線AD上截取AE=AB,連接CE,根據(jù)SAS不難證得△ABC≌△AEC,從而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,證得∠B=∠CDE,即可得出結(jié)果.【詳解】解:在射線AD上截取AE=AB,連接CE,如圖所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC與△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故選:C.【點睛】本題主要考查全等三角形的判定與性質(zhì),解答的關(guān)鍵是作出適當(dāng)?shù)妮o助線AE,CE.6、A【分析】由“SAS”可證△BDF≌△CED,可得∠BFD=∠CDE,由外角的性質(zhì)可求解.【詳解】解答:解:∵AB=AC,∠A=72°,∴∠B=∠C=54°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠CDE+∠FDE,∴∠FDE=∠B=54°,故選:A.【點睛】本題考查全等三角形的判定與性質(zhì),掌握全等三角形的判定定理與性質(zhì)是解題的關(guān)鍵.7、A【分析】根據(jù)三角形的高線的定義解答.【詳解】解:根據(jù)三角形的高的定義,AD為△ABC中BC邊上的高.故選:A.【點睛】本題主要考查了三角形的高的定義:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做三角形的高,熟記概念是解題的關(guān)鍵.8、A【分析】根據(jù)題意可得,,△ABD和△BCD的周長差為線段的差,即可求解.【詳解】解:根據(jù)題意可得,△ABD的周長為,△BCD的周長為△ABD和△BCD的周長差為故選:A【點睛】本題考查了三角形中線的性質(zhì)及三角形周長的計算,熟練掌握三角形中線的性質(zhì)是解答本題的關(guān)鍵.9、B【分析】根據(jù)三角形全等的判定定理(定理和定理)即可得.【詳解】解:A、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;B、此項滿足定理,與全等,符合題意;C、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;D、中,角度為的夾邊長為,則此項不滿足定理,與不全等,不符題意;故選:B.【點睛】本題考查了三角形全等的判定定理,熟練掌握三角形全等的判定方法是解題關(guān)鍵.10、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進(jìn)而求得三角形的個數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個值.則對應(yīng)的三角形有3個.故選:C.【點睛】本題主要考查了三角形三邊關(guān)系,準(zhǔn)確分析判斷是解題的關(guān)鍵.二、填空題1、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點E在直線y=x-4上,當(dāng)OE⊥CD時,OE最小,據(jù)此求出坐標(biāo)即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點C(4,0),點D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點E在直線CD上,當(dāng)OE⊥CD時,OE最小,此時△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時點E的坐標(biāo)為:(2,-2).故答案為:-2【點睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點E運動的軌跡,確定點E的位置.2、100【分析】直接利用三角形的外角的性質(zhì)得出∠CEO=80°,再利用全等三角形的性質(zhì)得出答案.【詳解】解:∵∠A=60°,∠B=20°,∴∠CEO=80°,∵△ABE≌△ACD,∴∠B=∠C=20°,∴∠DOE=∠C+∠CEO=100°.故答案為:100.【點睛】此題主要考查了全等三角形的性質(zhì)以及三角形的外角的性質(zhì),求出∠CEO=80°是解題關(guān)鍵.3、度【分析】連接,,利用證明,則,根據(jù)角平分線的定義得到,再利用三角形外角性質(zhì)得出,最后根據(jù)角平分線的定義即可得解.【詳解】解:連接,,平分,,在和中,,,,平分,,,,,,,平分,,故答案為:.【點睛】本題考查了全等三角形的判定與性質(zhì),角平分線,解題的關(guān)鍵是利用證明.4、三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性【分析】根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性解答.【詳解】由圖示知,四邊形變形了,而三角形沒有變形,其中所蘊含的數(shù)學(xué)原理是三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.故答案是:三角形具有穩(wěn)定性,四邊形具有不穩(wěn)定性.【點睛】本題考查了三角形的穩(wěn)定性和四邊形具有不穩(wěn)定性,關(guān)鍵抓住圖中圖形是否變形,從而判斷是否具有穩(wěn)定性.5、不合格【分析】連接AC并延長,然后根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可進(jìn)行判定.【詳解】解:如圖,連接AC并延長,由三角形的外角性質(zhì)可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴這個零件不合格.故答案為:不合格.【點睛】本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)并作輔助線構(gòu)造出兩個三角形是解題的關(guān)鍵.6、(答案不唯一)【分析】在與中,已經(jīng)有條件:所以補充可以利用證明兩個三角形全等.【詳解】解:在與中,所以補充:故答案為:【點睛】本題考查的是全等三角形的判定,掌握“利用邊邊邊公理證明兩個三角形全等”是解本題的關(guān)鍵.7、①②④【分析】先證△AEB≌△ADC(SAS),再證△EPC≌△DPB(AAS),可判斷①;可證△APC≌△APB(SSS),判定斷②;利用特殊等腰三角形可得可判斷③,根據(jù)全等三角形個數(shù)可判斷④即可【詳解】解:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS),∴∠B=∠C,∵EC=AC-AE=AB-AD=DB,在△EPC和△DPB中,∴△EPC≌△DPB(AAS),∴PC=PB,故①正確;在△APC和△APB中,∴△APC≌△APB(SSS),∴∠CAP=∠BAP,故②正確;當(dāng)AP=PB時,∠PAB=∠B,當(dāng)AP≠PB時,∠PAB≠∠B,故③不正確;在△EAP和△DAP中,∴△EAP≌△DAP(SAS),共有4對全等三角形,故④正確故答案為:①②④【點睛】本題考查三角形全等判定與性質(zhì),掌握全等三角形的判定方法與性質(zhì)是解題關(guān)鍵.8、2【分析】根據(jù)AAS證明△ACD≌△CBE,再利用其性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD與△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE?DE=AD?DE=6?4=2.故答案為:2.【點睛】本題考查三角形全等的判定和性質(zhì),要根據(jù)AAS證明△ACD≌△CBE是解題的關(guān)鍵.9、2<AC<10【分析】由BF=CE得到BC=EF=6,再根據(jù)三角形三邊關(guān)系求解即可.【詳解】解:∵BF=CE,點B、F、C、E在一條直線上,∴BF+FC=CE+FC,∴BC=EF=6,∵AB=4,∴6-4<AC<6+4,即2<AC<10,∴AC邊的取值范圍為2<AC<10.【點睛】本題考查三角形的三邊關(guān)系,熟知一個三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答的關(guān)鍵.10、6【分析】連接CF,依據(jù)AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,依據(jù)S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當(dāng)BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設(shè)S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當(dāng)BE=nCE時,S△AEC=,設(shè)S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關(guān)鍵是作輔助線,根據(jù)三角形之間的面積關(guān)系得出結(jié)論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.三、解答題1、(1)見解析;(2)猜想:,見解析;(3)見解析【分析】(1)先證明和,再根據(jù)證明即可;(2)根據(jù)AAS證明得,,進(jìn)一步可得出結(jié)論;(3)分別過點C、E作,,同(1)可證,,得出CM=EN,證明得,從而可得結(jié)論.【詳解】解:(1)證明:∵,,∴,∴∵,∴∴,在與中,∴(2)猜想:,∵∴,∴,在與中∴,∴,,∴(3)分別過點C、E作,,同(1)可證,,∴,∴,∵,,∴在與中∴,∴,∴G為CE的中點.【點睛】本題考查了全等三角形的判定與性質(zhì)、垂線的定義、角的互余關(guān)系,證得△ABD≌△CAE是解決問題的關(guān)鍵.2、(1)見解析;(2)10.【分析】(1)由題意可得AD=BD,由余角的性質(zhì)可得∠CBE=∠DAC,根據(jù)“ASA”可證△BDE≌△ADC;(2)由全等三角形的性質(zhì)可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面積公式可求BE的長度.【詳解】(1)證明:∵,∠ABC=45°∴∠ABC=∠BAD=45°,∴AD=BD,∵DA⊥BC,BE⊥AC∴∠ACD+∠DAC=90°,∠ACD+∠CBE=90°∴∠CBE=∠DAC,∵AD=BD,∠ADC=∠ADB=90°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論