版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、直角三角形中,兩直角邊長分別是12和5,則斜邊上的中線長是()A.2.5 B.6 C.6.5 D.132、如圖,在菱形中,P是對角線上一動點,過點P作于點E.于點F.若菱形的周長為24,面積為24,則的值為()A.4 B. C.6 D.3、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數(shù)是()A.2.5 B.2 C. D.4、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.165、如圖,在△ABC中,點E,F(xiàn)分別是AB,AC的中點.已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對折后展開得到折痕EF.點P為BC邊上任意一點,若將紙片沿著DP折疊,使點C恰好落在線段EF的三等分點上,則BC的長等于_________cm.2、如圖,直線l1⊥l3,l2⊥l3,垂足分別為P、Q,一塊含有45°的直角三角板的頂點A、B、C分別在直線l1、l2、線段PQ上,點O是斜邊AB的中點,若PQ等于,則OQ的長等于_____.3、如圖,在邊長為1的菱形ABCD中,∠ABC=60°,將△ABD沿射線BD的方向平移得到△A'B'D',分別連接A'C,A'D,B'C,則A'C+B'C的最小值為_____.4、如圖,在□中,⊥于點,⊥于點.若,,且的周長為40,則的面積為________.5、如圖,正方形ABCD的邊長為做正方形,使A,B,C,D是正方形各邊的中點;做正方形,使是正方形各邊的中點……以此類推,則正方形的邊長為__________.三、解答題(5小題,每小題10分,共計50分)1、在中,,斜邊,過點作,以AB為邊作菱形ABEF,若,求的面積.2、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,D,M關(guān)于直線AF對稱.連結(jié)DM并延長交AE的延長線于N,求證:.3、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點.
(1)如圖1,EF與AC交于點G,①連結(jié)NG,求線段NG的長;②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點.連結(jié)DN、MN.當(dāng)30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結(jié)論.4、已知:如圖,在中,,,.求證:互相平分.如圖,將矩形紙片ABCD沿對角線AC折疊,使點B落在點E處,AE交CD于點F,且已知AB=8,BC=4(1)判斷△ACF的形狀,并說明理由;(2)求△ACF的面積;5、如圖所示,正方形中,點E,F(xiàn)分別為BC,CD上一點,點M為EF上一點,,M關(guān)于直線AF對稱.
(1)求證:B,M關(guān)于AE對稱;(2)若的平分線交AE的延長線于G,求證:.-參考答案-一、單選題1、C【解析】【分析】利用勾股定理列式求出斜邊,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】解:由勾股定理得,斜邊,所以,斜邊上的中線長.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,解題的關(guān)鍵是熟記性質(zhì).2、A【解析】【分析】連接BP,通過菱形的周長為24,求出邊長,菱形面積為24,求出的面積,然后利用面積法,,即可求出的值.【詳解】解:如圖所示,連接BP,∵菱形ABCD的周長為24,∴,又∵菱形ABCD的面積為24,∴,∴,∴,∵,∴,∵,∴,故選:A.【點睛】本題主要考查菱形的性質(zhì),解題關(guān)鍵在于添加輔助線,通過面積法得出等量關(guān)系.3、D【解析】【分析】利用矩形的性質(zhì),求證明,進而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點表示,求出弧與數(shù)軸交點表示的實數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.4、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.5、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點E,F(xiàn)分別是AB,AC的中點,∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關(guān)鍵.二、填空題1、或【解析】【分析】分為將紙片沿縱向?qū)φ?,和沿橫向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當(dāng)將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點在中有如圖:當(dāng)將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點故答案為:或【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問題應(yīng)全面,不應(yīng)丟解.2、【解析】【分析】由“AAS”可證△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可證△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性質(zhì)和直角三角形的性質(zhì)可求解.【詳解】解:如圖,連接PO,并延長交l2于點H,∵l1⊥l3,l2⊥l3,∴l(xiāng)1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,,∴△ACP≌△CBQ(AAS),∴AP=CQ,PC=BQ,∴PC+CQ=AP+BQ=PQ=,∵AP∥BQ,∴∠OAP=∠OBH,∵點O是斜邊AB的中點,∴AO=BO,在△APO和△BHO中,,∴△APO≌△BHO(AAS),∴AP=BH,OP=OH,∴BH+BQ=AP+BQ=PQ,∴PQ=QH=,∵∠PQH=90°,∴PH=PQ=12,∵OP=OH,∠PQH=90°,∴OQ=PH=6.故答案為:6【點睛】本題主要考查了全等三角形的判定和性質(zhì),等腰三角形和直角三角形的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理,等腰三角形和直角三角形的性質(zhì)定理是解題的關(guān)鍵.3、【解析】【分析】根據(jù)菱形的性質(zhì)得到AB=1,∠ABD=30°,根據(jù)平移的性質(zhì)得到A′B′=AB=1,A′B′∥AB,推出四邊形A′B′CD是平行四邊形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根據(jù)平移的性質(zhì)得到點A′在過點A且平行于BD的定直線上,作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到結(jié)論.【詳解】解:∵在邊長為1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵將△ABD沿射線BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四邊形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四邊形A′B′CD是平行四邊形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵點A′在過點A且平行于BD的定直線上,∴作點D關(guān)于定直線的對稱點E,連接CE交定直線于A′,則CE的長度即為A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,如圖,過點D作DH⊥EC于H,∴,,∴,∴CE=2CH=,故答案為:.【點睛】本題考查了軸對稱-最短路線問題,菱形的性質(zhì),平行四邊形的判定和性質(zhì),含30度角的直角三角形的性質(zhì),平移的性質(zhì),正確地理解題意是解題的關(guān)鍵.4、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點睛】題目主要考查平行四邊形的性質(zhì)及運用方程思想進行求解線段長,理解題意,熟練運用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.5、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長,再根據(jù)勾股定理求出和的長,找出規(guī)律,即可得出正方形的邊長.【詳解】解:∵A,B,C,D是正方形各邊的中點∴,∵正方形ABCD的邊長為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長為故答案為:.【點睛】本題考查了正方形性質(zhì)、勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)計算結(jié)果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.三、解答題1、4【分析】分別過點E、C作EH、CG垂直AB,垂足為點H、G,則CG是斜邊AB上的高;在菱形ABEF中,利用平行線的性質(zhì)不難得到CG=EH;菱形的對角相等,四條邊相等,聯(lián)系含30°角的直角三角形的性質(zhì)求出EH,問題即可解答。【詳解】解:如圖,分別過作垂足為點四邊形ABEF為菱形,,,,在中,,根據(jù)題意,,根據(jù)平行線間的距離處處相等,.答:的面積為4.【點睛】本題考查了菱形的性質(zhì),直角三角形的性質(zhì),平行線間的距離及三角形面積的計算,正確利用菱形的四邊相等及直角三角形中,30角所對直角邊是斜邊的一半是解題的關(guān)鍵.2、見解析【分析】連結(jié),由對稱的性質(zhì)可知,進而可證,即可得,由∠AON=90°,可得.【詳解】證明:連結(jié),、關(guān)于對稱,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【點睛】本題是四邊形綜合題,主要考查了軸對稱的性質(zhì),等腰直角三角形的判定,全等三角形的判定與性質(zhì),綜合性較強,有一定難度.準(zhǔn)確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.3、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據(jù)等邊三角形的性質(zhì)、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質(zhì)可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)可得,從而可得,然后根據(jù)四邊形的內(nèi)角和即可得;(2)連接,先證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,再根據(jù)三角形中位線定理可得,然后根據(jù)三角形的外角性質(zhì)、角的和差即可得出結(jié)論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點為的中點,∴;②如圖,連接,由(1)①知,,∵,點為的中點,∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點為的中點,點為的中點,∴,∴,∵,即點是的中點,∴,∴,∵,∴,∴的大小為定值.【點睛】本題考查了等邊三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理等知識點,較難的是題(2),通過作輔助線,構(gòu)造全等三角形和利用到三角形中位線定理是解題關(guān)鍵.4、證明見解析【分析】連接,由三角形中位線定理可得,,可證四邊形ADEF是平行四邊形,由平行四邊形的性質(zhì)可得AE,DF互相平分;【詳解】
證明:連接,∵AD=DB,BE=EC,∴,∵BE=EC,AF=FC,∴,∴四邊形ADEF是平行四邊形,∴AE,DF互相平分.【點睛】本題考查了平行四邊形的性質(zhì)判定和性質(zhì)及三角形中位線定理,靈活運用這些性質(zhì)是解題的關(guān)鍵.(1)△ACF是等腰三角形,理由見解析;(2)10;(3)5、(1)見解析;(2)見解析【分析】(1)由已知可證,,即可得證;(2)由上述結(jié)論可得,再證△AFG為等腰直角三角形.【詳解】解:連結(jié)AM,DM,BM,
∵D、M關(guān)于直線AF對稱,∴AF垂直平分DM,∴AD=AM,F(xiàn)D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 帶英文的合同范本
- 2025合肥恒遠化工物流發(fā)展有限公司招聘6人筆試重點題庫及答案解析
- 資質(zhì)注冊協(xié)議書
- 西安收房協(xié)議書
- 藥費補償協(xié)議書
- 責(zé)任追償協(xié)議書
- 征地苗木協(xié)議書
- 學(xué)生招生協(xié)議書
- 征地付款協(xié)議書
- 2025年齊齊哈爾龍江縣中醫(yī)醫(yī)院招聘編外工作人員11人筆試重點題庫及答案解析
- 2025貴州省專業(yè)技術(shù)人員繼續(xù)教育公需科目考試題庫(2025公需課課程)
- 美國國家公園管理
- 人教版五年級語文上冊期末考試卷【含答案】
- 四川省2025年高考綜合改革適應(yīng)性演練測試化學(xué)試題含答案
- 籃球原地投籃教學(xué)
- 醫(yī)療機構(gòu)安全生產(chǎn)事故綜合應(yīng)急預(yù)案
- 水利信息化計算機監(jiān)控系統(tǒng)單元工程質(zhì)量驗收評定表、檢查記錄
- 《管理學(xué)原理》課程期末考試復(fù)習(xí)題庫(含答案)
- DL-T+5174-2020燃?xì)?蒸汽聯(lián)合循環(huán)電廠設(shè)計規(guī)范
- 消費者在直播帶貨中沖動行為的影響因素探究
- 人工智能中的因果驅(qū)動智慧樹知到期末考試答案章節(jié)答案2024年湘潭大學(xué)
評論
0/150
提交評論