2024-2025學(xué)年黑龍江省五常市中考數(shù)學(xué)題庫檢測試題打印附答案詳解(B卷)_第1頁
2024-2025學(xué)年黑龍江省五常市中考數(shù)學(xué)題庫檢測試題打印附答案詳解(B卷)_第2頁
2024-2025學(xué)年黑龍江省五常市中考數(shù)學(xué)題庫檢測試題打印附答案詳解(B卷)_第3頁
2024-2025學(xué)年黑龍江省五常市中考數(shù)學(xué)題庫檢測試題打印附答案詳解(B卷)_第4頁
2024-2025學(xué)年黑龍江省五常市中考數(shù)學(xué)題庫檢測試題打印附答案詳解(B卷)_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省五常市中考數(shù)學(xué)題庫檢測試題打印考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在平面直角坐標(biāo)系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應(yīng)的函數(shù)表達式為(

)A. B. C. D.2、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能3、已知每個網(wǎng)格中小正方形的邊長都是1,如圖中的陰影圖案是由三段以格點為圓心,半徑分別為1和2的圓弧圍成,則陰影部分的面積是()A. B.π﹣2 C.1+ D.1﹣4、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結(jié)果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.875、關(guān)于的一元二次方程的兩根應(yīng)為(

)A. B., C. D.二、多選題(5小題,每小題3分,共計15分)1、已知拋物線上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如表所示,對于下列結(jié)論:x…-10123…y…30-1m3…①拋物線開口向下;②拋物線的對稱軸為直線;③方程的兩根為0和2;④當(dāng)時,x的取值范圍是或.正確的是(

)A.① B.② C.③ D.④2、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(

)A. B. C. D.3、如果一種變換是將拋物線向右平移2個單位或向上平移1個單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+174、下列命題正確的是(

)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經(jīng)過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦5、二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論中正確的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.2、在平面直角坐標(biāo)系中,將點A先向右平移4個單位,再向下平移6個單位得到點B,如果點A和點B關(guān)于原點對稱,那么點A的坐標(biāo)是____________.3、如圖,二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),它的對稱軸為直線x=1,則下列結(jié)論中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一個根在2,3之間,正確的有_______(填序號).4、已知二次函數(shù),當(dāng)分別取時,函數(shù)值相等,則當(dāng)取時,函數(shù)值為______.5、“降次”是解一元二次方程的基本思想,用這種思想解高次方程x3-x=0,它的解是_____________.四、解答題(6小題,每小題10分,共計60分)1、如圖1,在等腰直角三角形中,.點,分別為,的中點,為線段上一動點(不與點,重合),將線段繞點逆時針方向旋轉(zhuǎn)得到,連接,.(1)證明:;(2)如圖2,連接,,交于點.①證明:在點的運動過程中,總有;②若,當(dāng)?shù)拈L度為多少時,為等腰三角形?2、某商場經(jīng)營某種品牌的玩具,購進的單價是30元,根據(jù)市場調(diào)查,在一段時間內(nèi),銷售單價是40元時,銷售量是600元,而銷售單價每漲1元,就會少售出10件玩具.(1)設(shè)該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲利利潤W元;(2)在(1)的條件下,若商場獲利了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?(3)在(1)的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務(wù),求商場銷售該品牌玩具獲利的最大利潤是多少元?3、如圖,矩形ABCD中,AB=6cm,BC=12cm..點M從點A開始沿AB邊向點B以1cm/秒的速度向B點移動,點N從點B開始沿BC邊以2cm/秒的速度向點C移動.若M,N分別從A,B點同時出發(fā),設(shè)移動時間為t(0<t<6),△DMN的面積為S.(1)求S關(guān)于t的函數(shù)關(guān)系式,并求出S的最小值;(2)當(dāng)△DMN為直角三角形時,求△DMN的面積.4、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當(dāng)直線l與這個新圖象有且只有一個公共點時,d=;(2)當(dāng)直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當(dāng)直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當(dāng)直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.5、在中,,,將繞點C順時針旋轉(zhuǎn)一定的角度得到,點A、B的對應(yīng)點分別是D、E.(1)當(dāng)點E恰好在AC上時,如圖1,求的大?。?2)若時,點F是邊AC中點,如圖2,求證:四邊形BEDF是平行四邊形(請用兩組對邊分別相等的四邊形是平行四邊形)6、若二次函數(shù)圖像經(jīng)過,兩點,求、的值.-參考答案-一、單選題1、B【解析】【分析】先求出平移后拋物線的頂點坐標(biāo),進而即可得到答案.【詳解】解:∵的頂點坐標(biāo)為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標(biāo)為(-2,1),∴所得拋物線對應(yīng)的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標(biāo)或掌握“左加右減,上加下減”,是解題的關(guān)鍵.2、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.3、B【解析】【分析】如圖,標(biāo)注頂點,連接AB,由圖形的對稱性可得陰影部分面積=S扇形AOB-S△ABO,從而可得答案.【詳解】解:標(biāo)注頂點,連接AB,由對稱性可得:陰影部分面積=S扇形AOB-S△ABO=.故選:B.【考點】本題考查的是陰影部分的面積的計算,扇形面積的計算,掌握“圖形的對稱性”是解本題的關(guān)鍵.4、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.5、B【解析】【分析】先把方程化為一般式,再計算判別式的值,然后利用求根公式解方程即可.【詳解】x2?3ax+a2=0,△=(?3a)2?4××a2=a2,x=.所以x1=a,x2=a.故答案選B.【考點】本題考查了解一元二次方程,解題的關(guān)鍵是根據(jù)公式法解一元二次方程.二、多選題1、CD【解析】【分析】根據(jù)表格可知直線x=1是拋物線對稱軸,此時有最小值,與x軸交點坐標(biāo)為(0,0)(2,0)據(jù)此可判斷①②③,根據(jù)與x軸交點坐標(biāo)結(jié)合開口方向可判斷④.【詳解】解:從表格可以看出,函數(shù)的對稱軸是直線x=1,頂點坐標(biāo)為(1,﹣1),此時有最小值∴函數(shù)與x軸的交點為(0,0)、(2,0),∴拋物線y=ax2+bx+c的開口向上故①錯誤;拋物線y=ax2+bx+c的對稱軸為直線x=1故②錯誤;方程ax2+bx+c=0的根為0和2故③正確;當(dāng)y>0時,x的取值范圍是x<0或x>2故④正確;故選CD.【考點】本題考查了二次函數(shù)的圖象和性質(zhì).解題的關(guān)鍵在于根據(jù)表格獲取正確的信息.2、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進而對所得結(jié)論進行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當(dāng)x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運用對稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.3、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個單位得到y(tǒng)=x2,再向上平移1個單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.4、ABD【解析】【分析】根據(jù)垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經(jīng)過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關(guān)鍵.5、ABE【解析】【分析】根據(jù)拋物線的對稱軸為直線x=2,則有4a+b=0,可得A正確;根據(jù)二次函數(shù)的對稱性得到當(dāng)x=3時,函數(shù)值大于0,則9a+3b+c>0,即9a+c>﹣3b,可得B正確;由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根據(jù)拋物線開口向下得a<0,于是有7a﹣3b+2c<0,可得C錯誤;利用拋物線的對稱性得到(﹣3,)在拋物線上,然后利用二次函數(shù)的增減性可得D錯誤;作出直線y=﹣3,然后依據(jù)函數(shù)圖象進行判斷可得E正確;綜上即可得答案.【詳解】A項:∵x==2,∴4a+b=0,故A正確.B項:∵拋物線與x軸的一個交點為(-1,0),對稱軸為直線x=2,∴另一個交點為(5,0),∵拋物線開口向下,∴當(dāng)x=3時,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正確.C項:∵拋物線與x軸的一個交點為(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵拋物線開口向下,∴a<0,∴7a﹣3b+2c<0,故C錯誤;D項:∵拋物線的對稱軸為x=2,C(7,)在拋物線上,∴點(﹣3,)與C(7,)關(guān)于對稱軸x=2對稱,∵A(﹣3,)在拋物線上,∴=,∵﹣3<﹣12,在對稱軸的左側(cè),拋物線開口向下,∴y隨x的增大而增大,∴=<,故D錯誤.E項:方程a(x+1)(x﹣5)=0的兩根為x=﹣1或x=5,過y=﹣3作x軸的平行線,直線y=﹣3與拋物線的交點的橫坐標(biāo)為方程的兩根,∵<,拋物線與x軸交點為(-1,0),(5,0),∴依據(jù)函數(shù)圖象可知:<﹣1<5<,故E正確.故答案為:ABE【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.三、填空題1、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.2、【解析】【分析】先按題目要求對A、B點進行平移,再根據(jù)原點對稱的特征:橫縱坐標(biāo)互為相反數(shù)進行列方程,求解.【詳解】設(shè),向右平移4個單位,再向下平移6個單位得到∵A、B關(guān)于原點對稱,∴,,解得,,∴故答案為:【考點】本題考查點的平移和原點對稱的性質(zhì),掌握這些是解題關(guān)鍵.3、①②④【解析】【分析】由二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),即可判斷①;由拋物線的對稱軸為直線x=1,即可判斷②;拋物線與x軸的一個交點在-1到0之間,拋物線對稱軸為直線x=1,即可判斷④,由拋物線開口向下,得到a<0,再由當(dāng)x=-1時,,即可判斷③.【詳解】解:∵二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點為(0,3),∴c=3,故①正確;∵拋物線的對稱軸為直線x=1,∴,即,故②正確;∵拋物線與x軸的一個交點在-1到0之間,拋物線對稱軸為直線x=1,∴拋物線與x軸的另一個交點在2到3之間,故④正確;∵拋物線開口向下,∴a<0,∵當(dāng)x=-1時,,∴即,故③錯誤,故答案為:①②④.【考點】本題主要考查了二次函數(shù)圖像的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握二次函數(shù)圖像的性質(zhì).4、2020【解析】【分析】根據(jù)二次函數(shù)y=2x2+2020,當(dāng)x分別取x1,x2(x1≠x2)時,函數(shù)值相等,可以得到x1和x2的關(guān)系,從而可以得到2x1+2x2的值,進而可以求得當(dāng)x取2x1+2x2時,函數(shù)的值.【詳解】解:∵二次函數(shù)y=2x2+2020,當(dāng)x分別取x1,x2(x1≠x2)時,函數(shù)值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴當(dāng)x=2x1+2x2時,y=2×0+2020=0+2020=2020,故答案為:2020.【考點】本題考查二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)解答.5、【解析】【分析】先把方程的左邊分解因式,再化為三個一次方程進行降次,再解一次方程即可.【詳解】解:則或或解得:故答案為:【考點】本題考查的是利用因式分解的方法把高次方程轉(zhuǎn)化為一次方程,掌握“因式分解的方法與應(yīng)用”是解本題的關(guān)鍵.四、解答題1、(1)見詳解;(2)①見詳解;②當(dāng)?shù)拈L度為2或時,為等腰三角形【解析】【分析】(1)由旋轉(zhuǎn)的性質(zhì)得AH=AG,∠HAG=90°,從而得∠BAH=∠CAG,進而即可得到結(jié)論;(2)①由,得AH=AG,再證明,進而即可得到結(jié)論;②為等腰三角形,分3種情況:(a)當(dāng)∠QAG=∠QGA=45°時,(b)當(dāng)∠GAQ=∠GQA=67.5°時,(c)當(dāng)∠AQG=∠AGQ=45°時,分別畫出圖形求解,即可.【詳解】解:(1)∵線段繞點A逆時針方向旋轉(zhuǎn)得到,∴AH=AG,∠HAG=90°,∵在等腰直角三角形中,,AB=AC,∴∠BAH=90°-∠CAH=∠CAG,∴;(2)①∵在等腰直角三角形中,AB=AC,點,分別為,的中點,∴AE=AF,是等腰直角三角形,∵AH=AG,∠BAH=∠CAG,∴,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:;②∵,點,分別為,的中點,∴AE=AF=2,∵∠AGH=45°,為等腰三角形,分3種情況:(a)當(dāng)∠QAG=∠QGA=45°時,如圖,則∠HAF=90°-45°=45°,∴AH平分∠EAF,∴點H是EF的中點,∴EH=;(b)當(dāng)∠GAQ=∠GQA=(180°-45°)÷2=67.5°時,如圖,則∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2;(c)當(dāng)∠AQG=∠AGQ=45°時,點H與點F重合,不符合題意,舍去,綜上所述:當(dāng)?shù)拈L度為2或時,為等腰三角形.【考點】本題主要考查等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,熟練掌握全等三角形的判定定理,根據(jù)題意畫出圖形,進行分類討論,是解題的關(guān)鍵.2、(1),;(2)50元或80元;(3)商場銷售該品牌玩具獲利的最大利潤是10560元【解析】【分析】(1)根據(jù)銷售量與銷售單價之間的變化關(guān)系就可以直接求出y與x之間的關(guān)系式;根據(jù)銷售問題的利潤=售價-進價就可以表示出w與x之間的關(guān)系;(2)根據(jù)題意得方程求得x1=50,x2=80,于是得到結(jié)論;(3)根據(jù)銷售單價不低于45元且商場要完成不少于480件的銷售任務(wù)求得45≤x≤52,根據(jù)二次函數(shù)的性質(zhì)得到當(dāng)45≤x≤52時,y隨x增大而增大,于是得到結(jié)論.【詳解】解:(1)依等量關(guān)系式“銷量=原銷量-因漲價而減少銷量,總利潤=單個利潤×銷量”可列式為:y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由題意可得:10+1300x30000=10000,解得:x=50或x=80,∴該玩具銷售單價x應(yīng)定為50元或80元(3)由題意可得:,解得:45≤x≤52,W=10+1300x30000=10(+12250,∵10<0,W隨x的增大而減小,又∵45≤x≤52,∴當(dāng)x=52時,W有最大值,最大值為10560元,∴商場銷售該品牌玩具獲利的最大利潤是10560元.【考點】本題考查了一元二次方程的解法的運用,二次函數(shù)的解析式的運用,二次函數(shù)的頂點式的運用,解答時求出二次函數(shù)的解析式是關(guān)鍵.3、(1)27(2)【解析】【分析】(1)根據(jù)t秒時,M、N兩點的運動路程,分別表示出AM、BM、BN、CN的長度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN進行列式即可得到S關(guān)于t的函數(shù)關(guān)系式,通過配方即可求得最小值;(2)當(dāng)△DMN為直角三角形時,由∠MDN<90°,分∠NMD或∠MND為90°兩種情況進行求解即可得.【詳解】(1)由題意,得AM=tcm,BN=2tcm,則BM=(6-t)cm,CN=(12-2t)cm,∵S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN,∴S=12×6-×12t-(6-t)·2t-×6(12-2t)=t2-6t+36=(t-3)2+27,∵t=3在范圍0<t<6內(nèi),∴S的最小值為27cm2;(2)當(dāng)△DMN為直角三角形時,∵∠MDN<90°,∴可能∠NMD或∠MND為90°,當(dāng)∠NMD=90°時,DN2=DM2+MN2,∴(12-2t)2+62=122+t2+(6-t)2+(2t)2,解得t=0或-18,不在范圍0<t<6內(nèi),∴不可能;當(dāng)∠MND=90°時,DM2=DN2+MN2,∴122+t2=(12-2t)2+62+(6-t)2+(2t)2,解得t=或6,(6不在范圍0<t<6內(nèi)舍),∴S=(-3)2+27=cm2.【考點】本題考查了二次函數(shù)的應(yīng)用,涉及矩形的性質(zhì)、三角形面積、二次函數(shù)的性質(zhì)、勾股定理的應(yīng)用等知識,熟練掌握和靈活應(yīng)用相關(guān)知識是解題的關(guān)鍵.4、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標(biāo),然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標(biāo)進行數(shù)形結(jié)合畫圖找出d的取值范圍即可.【詳解】解:(1)當(dāng)直線l經(jīng)過點A(-3,0)時,d=;(2)設(shè)拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標(biāo)恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個相等實數(shù)根,解△=9+8(2d+6)=0得d=,∴點P的坐標(biāo)為().①當(dāng)直線l經(jīng)過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;②當(dāng)直線l經(jīng)過點P()時,直線l與這個新圖象有且只有三個公共點,解得d=;

∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經(jīng)過點A(-3,0)開始向下平移到直線l經(jīng)過點P()的過程中,直線l與這個新圖象有且只有兩個公共點,可得<d<②直線l從經(jīng)過點P()繼

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論