2022廣東省興寧市中考數(shù)學(xué)考試彩蛋押題附參考答案詳解【模擬題】_第1頁(yè)
2022廣東省興寧市中考數(shù)學(xué)考試彩蛋押題附參考答案詳解【模擬題】_第2頁(yè)
2022廣東省興寧市中考數(shù)學(xué)考試彩蛋押題附參考答案詳解【模擬題】_第3頁(yè)
2022廣東省興寧市中考數(shù)學(xué)考試彩蛋押題附參考答案詳解【模擬題】_第4頁(yè)
2022廣東省興寧市中考數(shù)學(xué)考試彩蛋押題附參考答案詳解【模擬題】_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省興寧市中考數(shù)學(xué)考試彩蛋押題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,正五邊形內(nèi)接于⊙,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),則的度數(shù)為(

)A. B. C. D.2、二次函數(shù)y=x2+px+q,當(dāng)0≤x≤1時(shí),此函數(shù)最大值與最小值的差(

)A.與p、q的值都有關(guān) B.與p無關(guān),但與q有關(guān)C.與p、q的值都無關(guān) D.與p有關(guān),但與q無關(guān)3、如圖,正五邊形ABCDE內(nèi)接于⊙O,則∠CBD的度數(shù)是()A.30° B.36° C.60° D.72°4、如圖,在中,,,若以點(diǎn)為圓心,的長(zhǎng)為半徑的圓恰好經(jīng)過的中點(diǎn),則的長(zhǎng)等于()A. B. C. D.5、如圖,一次函數(shù)y=-3x+4的圖象交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P在線段AB上(不與點(diǎn)A,B重合),過點(diǎn)P分別作OA和OB的垂線,垂足為C,D.若矩形OCPD的面積為1時(shí),則點(diǎn)P的坐標(biāo)為()A.(,3) B.(,2) C.(,2)和(1,1) D.(,3)和(1,1)二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,是的直徑,,是上的點(diǎn),且,分別與,相交于點(diǎn),,則下列結(jié)論一定成立的是(

)A. B. C.平分D. E.2、如圖,在△ABC中,AB=BC,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)a度,得到△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC,BC于點(diǎn)D,F(xiàn),下列結(jié)論:其中正確的有(

).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF3、已知關(guān)于的方程,下列說法不正確的是(

)A.當(dāng)時(shí),方程無解 B.當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根C.當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根 D.當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根4、(多選)若數(shù)使關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)解,且使關(guān)于的分式方程的解為非負(fù)整數(shù),則滿足條件的的值為(

)A.1 B.3 C.5 D.75、下列關(guān)于x的方程沒有實(shí)數(shù)根的是(

)A.x2-x+1=0 B.x2+x+1=0C.(x-1)(x+2)=0 D.(x-1)2+1=0第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、在一個(gè)不透明的盒子里裝有若干個(gè)紅球和20個(gè)白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復(fù)實(shí)驗(yàn)發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個(gè).2、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機(jī)抽取一張,則抽出的牌上的數(shù)小于5的概率為_____.3、如圖,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)4、不透明袋子中裝有5個(gè)球,其中有2個(gè)紅球、3個(gè)黑球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出1個(gè)球,則它是黑球的概率是________.5、將拋物線向上平移()個(gè)單位長(zhǎng)度,<k<,平移后的拋物線與雙曲線y=(x>0)交于點(diǎn)P(p,q),M(1+,n),則下列結(jié)論正確的是__________.(寫出所有正確結(jié)論的序號(hào))①0<p<1-;

②1-<p<1;

③q<n;

④q>2k-k.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、已知,且,求x,y的值.2、某化工材料經(jīng)售公司購(gòu)進(jìn)了一種化工原料,進(jìn)貨價(jià)格為每千克30元.物價(jià)部門規(guī)定其銷售單價(jià)不得高于每千克70元,也不得低于30元.市場(chǎng)調(diào)查發(fā)現(xiàn):?jiǎn)蝺r(jià)每千克70元時(shí)日均銷售;單價(jià)每千克降低一元,日均多售.在銷售過程中,每天還要支出其他費(fèi)用500元(天數(shù)不足一天時(shí),按一天計(jì)算).(1)如果日均獲利1950元,求銷售單價(jià);(2)銷售單價(jià)為多少時(shí),可獲得最大利潤(rùn)?最大利潤(rùn)為多少.五、解答題(4小題,每小題10分,共計(jì)40分)1、某商店如果將進(jìn)價(jià)8元的商品按每件10元出售,那么每天可銷售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的方法增加利潤(rùn),如果這種商品的售價(jià)每漲1元,那么每天的進(jìn)貨量就會(huì)減少20件,要想每天獲得640元的利潤(rùn),則每件商品的售價(jià)定為多少元最為合適?2、定理:一條弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半.如圖1,∠A=∠O.已知:如圖2,AC是⊙O的一條弦,點(diǎn)D在⊙O上(與A、C不重合),聯(lián)結(jié)DE交射線AO于點(diǎn)E,聯(lián)結(jié)OD,⊙O的半徑為5,tan∠OAC=.(1)求弦AC的長(zhǎng).(2)當(dāng)點(diǎn)E在線段OA上時(shí),若△DOE與△AEC相似,求∠DCA的正切值.(3)當(dāng)OE=1時(shí),求點(diǎn)A與點(diǎn)D之間的距離(直接寫出答案).3、在中,,,點(diǎn)E在射線CB上運(yùn)動(dòng).連接AE,將線段AE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到EF,連接CF.(1)如圖1,點(diǎn)E在點(diǎn)B的左側(cè)運(yùn)動(dòng).①當(dāng),時(shí),則___________°;②猜想線段CA,CF與CE之間的數(shù)量關(guān)系為____________.(2)如圖2,點(diǎn)E在線段CB上運(yùn)動(dòng)時(shí),第(1)問中線段CA,CF與CE之間的數(shù)量關(guān)系是否仍然成立?如果成立,請(qǐng)說明理由;如果不成立,請(qǐng)求出它們之間新的數(shù)量關(guān)系.4、如圖,在直角坐標(biāo)系中,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°.(1)畫出旋轉(zhuǎn)后的△AB1C1,并寫出B1、C1的坐標(biāo);(2)求線段AB在旋轉(zhuǎn)過程中掃過的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點(diǎn)的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對(duì)應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點(diǎn)】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.2、D【解析】【分析】分別求出函數(shù)解析式的最小值、當(dāng)0≤x≤1時(shí)端點(diǎn)值即:當(dāng)x=0和x=1時(shí)的函數(shù)值.由二次函數(shù)性質(zhì)可知此函數(shù)最大值與最小值必是其中的兩個(gè),通過比較可知差值與p有關(guān),但與q無關(guān)【詳解】解:依題意得:當(dāng)時(shí),端點(diǎn)值,當(dāng)時(shí),端點(diǎn)值,當(dāng)時(shí),函數(shù)最小值,由二次函數(shù)的最值性質(zhì)可知,當(dāng)0≤x≤1時(shí),此函數(shù)最大值和最小值是、、其中的兩個(gè),所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關(guān),但與q無關(guān)故選:.【考點(diǎn)】本題考查了二次函數(shù)的最值問題,掌握二次函數(shù)的性質(zhì)、靈活運(yùn)用配方法是解題的關(guān)鍵.3、B【分析】求出正五邊形的一個(gè)內(nèi)角的度數(shù),再根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理計(jì)算即可.【詳解】解:∵正五邊形ABCDE中,∴∠BCD==108°,CB=CD,∴∠CBD=∠CDB=(180°-108°)=36°,故選:B.【點(diǎn)睛】本題考查了正多邊形和圓,求出正五邊形的一個(gè)內(nèi)角度數(shù)是解決問題的關(guān)鍵.4、D【分析】連接CD,由直角三角形斜邊中線定理可得CD=BD,然后可得△CDB是等邊三角形,則有BD=BC=5cm,進(jìn)而根據(jù)勾股定理可求解.【詳解】解:連接CD,如圖所示:∵點(diǎn)D是AB的中點(diǎn),,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故選D.【點(diǎn)睛】本題主要考查圓的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理,熟練掌握?qǐng)A的基本性質(zhì)、直角三角形斜邊中線定理及勾股定理是解題的關(guān)鍵.5、D【解析】【分析】由點(diǎn)P在線段AB上可設(shè)點(diǎn)P的坐標(biāo)為(m,-3m+4)(0<m<),進(jìn)而可得出OC=m,OD=-3m+4,結(jié)合矩形OCPD的面積為1,即可得出關(guān)于m的一元二次方程,解之即可得出m的值,再將其代入點(diǎn)P的坐標(biāo)中即可求出結(jié)論.【詳解】解:∵點(diǎn)P在線段AB上(不與點(diǎn)A,B重合),且直線AB的解析式為y=-3x+4,∴設(shè)點(diǎn)P的坐標(biāo)為(m,-3m+4)(0<m<),∴OC=m,OD=-3m+4.∵矩形OCPD的面積為1,∴m(-3m+4)=1,∴m1=,m2=1,∴點(diǎn)P的坐標(biāo)為(,3)或(1,1).故選:D.【考點(diǎn)】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及解一元二次方程,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及,找出關(guān)于m的一元二次方程是解題的關(guān)鍵.二、多選題1、ACDE【解析】【分析】根據(jù)直徑的性質(zhì),垂徑定理等知識(shí)一一判斷即可;【詳解】∵AB是直徑,∴∠ADB=90°,∴AD⊥BD,故A正確;∵C,D是⊙O上的點(diǎn),∴與不一定相等,∴∠A與∠CBA不一定相等,∵OB=OC,∴∠C=∠CBA,∴∠A與∠C不一定相等,∵∠AOC=∠C+∠CBA∠AEC=∠A+∠CBA∴∠AOC與∠AEC不一定相等,故B選項(xiàng)錯(cuò)誤;∵OC∥BD,BD⊥AD,∴OC⊥AD,∴,AF=DF,故D正確∴∠ABC=∠CBD,即CB平分∠ABD,故C正確,∵AF=DF,AO=OB,∴BD=2OF,故E正確,故選:ACDE.【考點(diǎn)】本題考查直徑的性質(zhì)、垂徑定理、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考常考題型.2、ABD【解析】【分析】根據(jù)等腰三角形的性質(zhì)由BA=BC得∠A=∠C,再根據(jù)旋轉(zhuǎn)的性質(zhì)得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據(jù)對(duì)頂角相等得∠BFC1=∠DFC,于是可根據(jù)三角形內(nèi)角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當(dāng)旋轉(zhuǎn)角等于∠C時(shí)才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當(dāng)旋轉(zhuǎn)角等于∠C時(shí),DF=FC,所以C錯(cuò)誤;故選ABD.【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.3、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關(guān)于的方程,A當(dāng)k=0時(shí),x-1=0,則x=1,故此選項(xiàng)錯(cuò)誤,符合題意;B當(dāng)k=1時(shí),-1=0,x=±1,方程有兩個(gè)不相等的實(shí)數(shù)解,故此選項(xiàng)錯(cuò)誤,符合題意;C當(dāng)k=-1時(shí),,則,,此時(shí)方程有兩個(gè)相等的實(shí)數(shù)根,故此選項(xiàng)正確,不符合題意;D當(dāng)時(shí),根據(jù)A選項(xiàng),若k=0,此時(shí)方程有一個(gè)實(shí)數(shù)根,故此選項(xiàng)錯(cuò)誤,符合題意,故選:ABD.【考點(diǎn)】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關(guān)鍵.4、AC【解析】【分析】根據(jù)一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負(fù)整數(shù)分別求出a的取值范圍,即可得答案.【詳解】∵關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)解,∴,解得:,∵,∴,解得:,∵關(guān)于的分式方程的解為非負(fù)整數(shù),∴且,解得:且,∴且a≠3,∵是整數(shù),∴a=1或5,故選:AC.【考點(diǎn)】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個(gè)不等式的解集是解題關(guān)鍵,注意分式的分母不為0的隱含條件,避免漏解.5、ABD【解析】【分析】將選項(xiàng)中的式子轉(zhuǎn)換為一元二次方程一般式,根據(jù)根的判別式可得結(jié)果.【詳解】解:A、x2-x+1=0,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;B、x2+x+1=0,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;C、(x-1)(x+2)=0,,方程有實(shí)數(shù)根,此選項(xiàng)不符合題意;D、原式整理為:,,方程沒有實(shí)數(shù)根,此選項(xiàng)符合題意;故選:ABD.【考點(diǎn)】本題考查了根的判別式:一元二次方程的根與有如下關(guān)系:當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)時(shí),方程無實(shí)數(shù)根.三、填空題1、30【分析】設(shè)袋中紅球有x個(gè),根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個(gè),根據(jù)題意,得:,解并檢驗(yàn)得:x=30.所以袋中紅球有30個(gè).故答案為:30.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,解決本題的關(guān)鍵是用頻率的集中趨勢(shì)來估計(jì)概率,這個(gè)固定的近似值2、【分析】抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,由此可以容易知道事件抽出的牌的點(diǎn)數(shù)小于5的概率.【詳解】解:∵抽出的牌的點(diǎn)數(shù)小于5有1,2,3,4共4個(gè),總的樣本數(shù)目為13,∴從中任意抽取一張,抽出的牌點(diǎn)數(shù)小于5的概率是:.故答案為:.【點(diǎn)睛】此題主要考查了概率的求法.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、【分析】先求出A、B、C坐標(biāo),再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計(jì)算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,∴當(dāng)時(shí),,B點(diǎn)坐標(biāo)為(0,1)當(dāng)時(shí),,A點(diǎn)坐標(biāo)為∴∵作的外接圓,∴線段AB中點(diǎn)C的坐標(biāo)為,∴三角形BOC是等邊三角形∴∵C的坐標(biāo)為∴∴故答案為:【點(diǎn)睛】本題主要考查了一次函數(shù)的綜合運(yùn)用,求扇形面積.用已知點(diǎn)的坐標(biāo)表示相應(yīng)的線段是解題的關(guān)鍵.4、【分析】根據(jù)概率公式計(jì)算即可【詳解】共有個(gè)球,其中黑色球3個(gè)從中任意摸出一球,摸出白色球的概率是.故答案為:【點(diǎn)睛】本題考查了簡(jiǎn)單概率公式的計(jì)算,熟悉概率公式是解題的關(guān)鍵.5、②④##④②【解析】【分析】先畫出函數(shù)圖像,判斷出當(dāng)時(shí)拋物線和反比例函數(shù)圖象上的點(diǎn)的縱坐標(biāo)的關(guān)系,確定拋物線右支與反比例函數(shù)圖象的交點(diǎn)個(gè)數(shù),再利用拋物線的對(duì)稱性與反比例函數(shù)的圖象與性質(zhì)直接判斷即可.【詳解】解:∵拋物線,∴該拋物線對(duì)稱軸為,頂點(diǎn)坐標(biāo)為(1,),將該拋物線向上平移()個(gè)單位長(zhǎng)度,則頂點(diǎn)坐標(biāo)為(1,),當(dāng)時(shí),反比例函數(shù)圖象上點(diǎn)的坐標(biāo)為(1,),如圖所示,拋物線平移后的頂點(diǎn)縱坐標(biāo)即為m,反比例函數(shù)上橫坐標(biāo)為1的點(diǎn)的縱坐標(biāo)即為s,∴m-s=,∵<k<,∴∴拋物線的右支與反比例函數(shù)圖象只有一個(gè)交點(diǎn),且該交點(diǎn)橫坐標(biāo)大于1;∵平移后的拋物線與雙曲線y=(x>0)交于點(diǎn)P(p,q),M(1+,n),∴點(diǎn)M為拋物線右支與反比例函數(shù)圖象的交點(diǎn),∴點(diǎn)P為拋物線左支與反比例函數(shù)圖象的交點(diǎn),由于反比例函數(shù)的圖像在第一象限內(nèi)y隨x的增大而減小,且拋物線關(guān)于直線對(duì)稱∴1-<p<1;q>2k-k.∴②④正確;故答案為:②④.【考點(diǎn)】本題考查了拋物線與反比例函數(shù)的圖像與性質(zhì),解題關(guān)鍵是弄清楚這兩個(gè)交點(diǎn)分別位于拋物線的左支和右支上,再利用拋物線的軸對(duì)稱性和反比例函數(shù)圖像的增減性進(jìn)行判斷.四、簡(jiǎn)答題1、x=6,y=10【解析】【分析】設(shè),則x=3k,y=5k,z=6k,由可求得k的值,從而可求得x與y的值.【詳解】設(shè),則x=3k,y=5k,z=6k∵∴解得:k=2∴x=3×2=6,y=5×2=10即x、y的值分別為6、10【考點(diǎn)】本題考查了比例的性質(zhì),若幾個(gè)比相等,即,常常設(shè)其比值為k,則有a=kb,c=kd,e=kf,再根據(jù)題目條件解答則更簡(jiǎn)便.2、(1)65;(2)當(dāng)單價(jià)為65時(shí),日獲利最大,最大利潤(rùn)為1950元.【解析】【分析】(1)若銷售單價(jià)為x元,則每千克降低(70-x)元,日均多銷售出2(70-x)千克,日均銷售量為[60+2(70-x)]千克,每千克獲利(x-30)元,根據(jù)題意可得等量關(guān)系:每千克利潤(rùn)×銷售量-500元=總利潤(rùn),根據(jù)等量關(guān)系列出方程即可;(2)運(yùn)用配方法配成頂點(diǎn)式,得頂點(diǎn)坐標(biāo),結(jié)合x的取值范圍即可求得結(jié)論.【詳解】解:(1)設(shè)銷售單價(jià)為x元,由題意得:(x-30)[60+2(70-x)]-500=1950,解得:x1=x2=65,∵銷售單價(jià)不得高于每千克70元,也不得低于每千克30元,∴x=65符合題意,答:銷售單價(jià)為65元時(shí),日均獲利為1950元;(2)設(shè)銷售單價(jià)為x元,可獲得利潤(rùn)為y,由題意得:y=(x-30)[60+2(70-x)]-500=-2x2+260x-6500(30≤x≤70),∴y=-2x2+260x-6500可化為y=-2(x-65)2+1950的形式,∴頂點(diǎn)坐標(biāo)為(65,1950),∵30<65<70,當(dāng)單價(jià)定為65元時(shí),日均獲利最大,最大利潤(rùn)為1950元.【考點(diǎn)】此題主要考查了一元二次方程的應(yīng)用,二次函數(shù)的應(yīng)用,關(guān)鍵是根據(jù)題意表示出日均銷售量,以及每千克的利潤(rùn).五、解答題1、每件商品的售價(jià)定為16元最為合適.【解析】【分析】設(shè)每件商品的售價(jià)定為x元,則每件商品的銷售利潤(rùn)為(x-8)元,每天的進(jìn)貨量為200-20(x-10)=(400-20x)件,利用每天銷售這種商品的利潤(rùn)=每件的銷售利潤(rùn)×日銷售量(日進(jìn)貨量),即可得出關(guān)于x的一元二次方程,解之即可得出x的值,再結(jié)合“現(xiàn)采用提高售價(jià),減少進(jìn)貨量的方法增加利潤(rùn)”,即可得出每件商品的售價(jià)定為16元最為合適..【詳解】解:設(shè)每件商品的售價(jià)定為x元,則每件商品的銷售利潤(rùn)為(x-8)元,每天的進(jìn)貨量為200-20(x-10)=(400-20x)件,依題意得:(x-8)(400-20x)=640,整理得:x2-28x+192=0,解得:x1=12,x2=16.又∵現(xiàn)采用提高售價(jià),減少進(jìn)貨量的方法增加利潤(rùn),∴x=16.答:每件商品的售價(jià)定為16元最為合適.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.2、(1)8(2)(3)或.【分析】(1)過點(diǎn)O作OH⊥AC于點(diǎn)H,由垂徑定理可得AH=CH=AC,由銳角三角函數(shù)和勾股定理可求解;(2)分兩種情況討論,由相似三角形的性質(zhì)可求AG,EG,CG的長(zhǎng),即可求解;(3)分兩種情況討論,由相似三角形和勾股定理可求解.(1)如圖2,過點(diǎn)O作OH⊥AC于點(diǎn)H,由垂徑定理得:AH=CH=AC,在Rt△OAH中,,∴設(shè)OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如圖2,過點(diǎn)O作OH⊥AC于H,過E作EG⊥AC于G,∵∠DEO=∠AEC,∴當(dāng)△DOE與△AEC相似時(shí)可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴當(dāng)△DOE與△AEC相似時(shí),不存在∠DOE=∠ACD情況,∴當(dāng)△DOE與△AEC相似時(shí),∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)當(dāng)點(diǎn)E在線段OA上時(shí),如圖3,過點(diǎn)E作EG⊥AC于G,過點(diǎn)O作OH⊥AC于H,延長(zhǎng)AO交⊙O于M,連接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直徑,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;當(dāng)點(diǎn)E在線段

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論