版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省凌海市中考數(shù)學考試彩蛋押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、為了解某地區(qū)九年級男生的身高情況,隨機抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結果,隨機抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(
)A.0.32 B.0.55 C.0.68 D.0.872、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°3、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o4、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5、對于函數(shù)的圖象,下列說法不正確的是(
)A.開口向下 B.對稱軸是直線C.最大值為 D.與軸不相交二、多選題(5小題,每小題3分,共計15分)1、已知直角三角形的兩條邊長恰好是方程的兩個根,則此直角三角形斜邊長是(
)A. B. C.3 D.52、下列說法不正確的是(
)A.經(jīng)過三個點有且只有一個圓B.經(jīng)過兩點的圓的圓心是這兩點連線的中點C.鈍角三角形的外心在三角形外部D.等腰三角形的外心即為其中心3、如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,下列結論正確的是(
)A.a(chǎn)+b+c<0B.a(chǎn)bc<0C.2a+b=0D.若P(﹣6,y1),Q(m,y2)是拋物線上兩點,且y1>y2,則﹣6<m<44、下列四個命題中正確的是(
)A.與圓有公共點的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過圓直徑的端點,垂直于此直徑的直線是該圓的切線5、如圖,在中,,,點D,E分別為,上的點,且.將繞點A逆時針旋轉至點B,A,E在同一條直線上,連接,.下列結論正確的是(
)A. B. C. D.旋轉角為第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標號分別為1,2,3,綠色球兩顆,標號分別為1,2,若從五顆球中任取兩顆,則兩顆球的標號之和不小于4的概率為__.2、小亮同學在探究一元二次方程的近似解時,填好了下面的表格:根據(jù)以上信息請你確定方程的一個解的范圍是________.3、若m,n是關于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.4、如果關于x的方程x2﹣3x+k=0(k為常數(shù))有兩個相等的實數(shù)根,那么k的值是___.5、如圖,△ABC和△DEC關于點C成中心對稱,若AC=1,AB=2,∠BAC=90°,則AE的長是_________.四、解答題(6小題,每小題10分,共計60分)1、已知關于x的一元二次方程有兩個實數(shù)根.(1)求k的取值范圍;(2)若,求k的值.2、在平面直角坐標系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側).(1)求拋物線的頂點P的坐標(用含a的代數(shù)式表示);(2)橫、縱坐標都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當時,請直接寫出“W區(qū)域”內的整點個數(shù);②當“W區(qū)域”內恰有2個整點時,結合函數(shù)圖象,直接寫出a的取值范圍.3、如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點A,B,拋物線頂點為C,△ABC為等邊三角形,求S△ABC;4、已知關于x的一元二次方程.(1)求證:不論m取何值,方程總有兩個不相等的實數(shù)根;(2)若方程有兩個實數(shù)根為,,且,求m的值.5、如圖所示,拋物線的對稱軸為直線,拋物線與軸交于、兩點,與軸交于點.(1)求拋物線的解析式;(2)連結,在第一象限內的拋物線上,是否存在一點,使的面積最大?最大面積是多少?6、一個二次函數(shù)y=(k﹣1).求k值.-參考答案-一、單選題1、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.2、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質,切線性質,直角三角形兩銳角互余性質,掌握圓的半徑相等,三角形外角性質,切線性質,直角三角形兩銳角互余性質.3、A【解析】【分析】在⊙O取點,連接利用圓的內接四邊形的性質與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內接四邊形,.故選A【考點】本題考查的是圓的內接四邊形的性質,同弧所對的圓心角是它所對的圓周角的2倍,掌握相關知識點是解題的關鍵.4、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.既不是軸對稱圖形,又不是中心對稱圖形,故本選項不符合題意;C.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.故選:C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.5、D【解析】【分析】根據(jù)二次函數(shù)的性質,進行判斷,即可得到答案.【詳解】解:∵,則開口向下,故A正確;對稱軸是直線,故B正確;當,y有最大值k,故C正確;當,,與y軸肯定有交點,故D錯誤;故選擇:D.【考點】本題考查了二次函數(shù)的性質,解題的關鍵是熟記二次函數(shù)的性質.二、多選題1、AC【解析】【分析】先解出一元二次方程,再根據(jù)勾股定理計算即可;【詳解】,,∴或,當2、3是直角邊時,斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點】本題主要考查了一元二次方程的求解、勾股定理,準確計算是解題的關鍵.2、ABD【解析】【分析】A.根據(jù)確定圓的條件求解即可;B.根據(jù)確定圓心的方法求解即可;C.根據(jù)三角形外心的性質求解即可;D.根據(jù)三角形外心的性質求解即可;【詳解】解:A、如果三個點在一條直線上,不存在經(jīng)過這三個點的圓,故選項錯誤,符合題意;B、經(jīng)過兩點的圓的所有圓心在兩點連線的垂直平分線上,不僅僅是這兩點連線的中點,故選項錯誤,符合題意;C、鈍角三角形的外心是三邊垂直平分線的交點,在三角形外部,選項正確,不符合題意;D、等腰三角形的外心是三邊垂直平分線的交點,不是其中心,故選項錯誤,符合題意;故選:ABD.【考點】此題考查了確定圓的條件,確定圓心的方法,三角形的外心等知識,解題的關鍵是熟練掌握確定圓的條件,確定圓心的方法,三角形的外心.3、ABD【解析】【分析】根據(jù)題意可得點A(﹣4,0)關于對稱軸的對稱點,從而得到當時,,再由,可得在對稱軸右側隨的增大而增大,從而得到當時,;根據(jù)圖象可得,,可得;再由,可得;然后根據(jù)P(﹣6,y1)關于對稱軸的對稱點,可得當y1>y2時,﹣6<m<4,即可求解.【詳解】解:∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣4,0),其對稱軸為直線x=﹣1,∴點A(﹣4,0)關于對稱軸的對稱點,即當時,,∵拋物線開口向上,∴,∴在對稱軸右側隨的增大而增大,∴當時,,故A正確;∵拋物線與交于負半軸,∴,∵對稱軸為直線x=﹣1,,∴,即,∴,故B正確;∵,∴,故C錯誤;∵P(﹣6,y1)關于對稱軸的對稱點,∴當y1>y2時,﹣6<m<4,故D正確.故選:ABD【考點】本題主要考查了二次函數(shù)的圖象和性質,熟練掌握二次函數(shù)的圖象和性質,并利用數(shù)形結合思想解答是解題的關鍵.4、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點的直線是圓的切線.掌握切線的判定:①經(jīng)過半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個公共點的直線,是圓的割線,故該選項不符合題意;B中,應經(jīng)過此半徑的外端,故該選項不符合題意;C中,根據(jù)切線的判定方法,故該選項符合題意;D中,根據(jù)切線的判定方法,故該選項符合題意.故選:CD.【考點】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關鍵.5、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,可得旋轉角為60°,故D錯誤;由DE∥BC,易證AD=AE,得出BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;證明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正確;即可得出結果.【詳解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴將△ADE繞點A逆時針旋轉至點B、A、E在同一條直線上,則旋轉角為:180°120°=60°,故D錯誤;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正確;故選:ABC.【考點】本題考查了旋轉的性質、等腰三角形的判定與性質、平行線的性質等知識;熟練掌握旋轉的性質與等腰三角形的性質是解題的關鍵.三、填空題1、##0.5【解析】【分析】畫樹狀圖,共有20個等可能的結果,兩顆球的標號之和不小于4的結果有10個,再由概率公式求解即可.【詳解】畫樹狀圖如圖:共有20個等可能的結果,兩顆球的標號之和不小于4的結果有10個,兩顆球的標號之和不小于4的概率為,故答案為:.【考點】本題考查了列表法與樹狀圖法以及概率公式,正確畫出樹狀圖是解題的關鍵.2、【解析】【分析】觀察表格可知,隨x的值逐漸增大,ax2+bx+c的值在3.24~3.25之間由負到正,故可判斷ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.【詳解】根據(jù)表格可知,ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.故答案為3.24<x<3.25.【考點】本題考查了一元二次方程的知識點,解題的關鍵是根據(jù)表格求出一元二次方程的近似根.3、21【解析】【分析】先根據(jù)根與系數(shù)的關系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.4、【解析】【分析】根據(jù)判別式的意義得到Δ=(-3)2-4k=0,然后解一元一次方程即可.【詳解】解:根據(jù)題意得Δ=(-3)2-4k=0,解得k=.故答案為.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.5、2【解析】【分析】根據(jù)中心對稱的性質AD=DE及∠D=90゜,由勾股定理即可求得AE的長.【詳解】∵△DEC與△ABC關于點C成中心對稱,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案為.【考點】本題考查了中心對稱的性質,勾股定理等知識,關鍵中心對稱性質的應用.四、解答題1、(1);(2)【解析】【分析】(1)根據(jù)建立不等式即可求解;(2)先提取公因式對等式變形為,再結合韋達定理求解即可.【詳解】解:(1)由題意可知,,整理得:,解得:,∴的取值范圍是:.故答案為:.(2)由題意得:,由韋達定理可知:,,故有:,整理得:,解得:,又由(1)中可知,∴的值為.故答案為:.【考點】本題考查了一元二次方程判別式、根與系數(shù)的關系、韋達定理、一元二次方程的解法等知識點,當>0時,方程有兩個不相等的實數(shù)根;當=0時,方程有兩個相等的實數(shù)根;當<0時,方程沒有實數(shù)根.2、(1)頂點P的坐標為;(2)①6個;②,.【解析】【分析】(1)由拋物線解析式直接可求;(2)①由已知可知A(0,2),C(2+,-2),畫出函數(shù)圖象,觀察圖象可得;②分兩種情況求:當a>0時,拋物線定點經(jīng)過(2,-2)時,a=1,拋物線定點經(jīng)過(2,-1)時,a=,則<a≤1;當a<0時,拋物線定點經(jīng)過(2,2)時,a=-1,拋物線定點經(jīng)過(2,1)時,a=-,則-1≤a<-.【詳解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,∴頂點為(2,-2a);(2)如圖,①∵a=2,∴y=2x2-8x+2,y=-2,∴A(0,2),C(2+,-2),∴有6個整數(shù)點;②當a>0時,拋物線定點經(jīng)過(2,-2)時,a=1,拋物線定點經(jīng)過(2,-1)時,,;∴.當時,拋物線頂點經(jīng)過點(2,2)時,;拋物線頂點經(jīng)過點(2,1)時,;∴.∴綜上所述:,.【考點】本題考查二次函數(shù)的圖象及性質;熟練掌握二次函數(shù)的圖象及性質是解題的關鍵.3、【解析】【分析】過B作BP⊥x軸交于點P,連接AC,BC,由拋物線y=得C(2,0),于是得到對稱軸為直線x=2,設B(m,n),根據(jù)△ABC是等邊三角形,得到BC=AB=2m-4,∠BCP=∠ABC=60°,求出PB=PC=(m-2),由于PB=n=,于是得到(m-2)=,解方程得到m的值,然后根據(jù)三角形的面積公式即可得到結果.【詳解】解:過B作BP⊥x軸交于點P,連接AC,BC,由拋物線y=得C(2,0),∴對稱軸為直線x=2,設B(m,n),∴CP=m-2,∵AB∥x軸,∴AB=2m-4,∵△ABC是等邊三角形,∴BC=AB=2m-4,∠BCP=∠ABC=60°,∴PB=PC=(m-2),∵PB=n=,∴(m-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《CJ 202-2004建筑排水系統(tǒng)吸氣閥》專題研究報告
- 2026年AI的雙重價值:助力氣候正向效應與推動能源轉型報告-
- 山東省濟南市名校聯(lián)考2025-2026學年高一上學期1月階段性檢測英語試卷(含答案無聽力原文及音頻)
- 2025年陽江職業(yè)技術學院馬克思主義基本原理概論期末考試模擬題及答案解析(必刷)
- 2024年盱眙縣招教考試備考題庫含答案解析(奪冠)
- 2025年晉寧縣招教考試備考題庫帶答案解析(必刷)
- 2025年雄縣招教考試備考題庫帶答案解析
- 2024年西安航空職工大學馬克思主義基本原理概論期末考試題及答案解析(必刷)
- 2025年青縣招教考試備考題庫附答案解析
- 2024年西南科技大學城市學院馬克思主義基本原理概論期末考試題含答案解析(必刷)
- 2025年農村電商直播基地農業(yè)產(chǎn)品上行解決方案報告
- 農村承包土地合同范本
- 吉利汽車開發(fā)流程
- 五年級數(shù)學下冊 分層訓練 2.1 因數(shù)和倍數(shù) 同步練習 (含答案)(人教版)
- 護理部主任年終述職
- 電力行業(yè)安全生產(chǎn)操作規(guī)程
- 螺桿壓縮機PSSR檢查表
- GB/T 4937.34-2024半導體器件機械和氣候試驗方法第34部分:功率循環(huán)
- TCALC 003-2023 手術室患者人文關懷管理規(guī)范
- 中藥熱奄包在呼吸系統(tǒng)疾病中的應用研究
- HACCP計劃年度評審報告
評論
0/150
提交評論