重難點解析京改版數(shù)學(xué)9年級上冊期末試題含答案詳解【研優(yōu)卷】_第1頁
重難點解析京改版數(shù)學(xué)9年級上冊期末試題含答案詳解【研優(yōu)卷】_第2頁
重難點解析京改版數(shù)學(xué)9年級上冊期末試題含答案詳解【研優(yōu)卷】_第3頁
重難點解析京改版數(shù)學(xué)9年級上冊期末試題含答案詳解【研優(yōu)卷】_第4頁
重難點解析京改版數(shù)學(xué)9年級上冊期末試題含答案詳解【研優(yōu)卷】_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、一次函數(shù)與二次函數(shù)在同一坐標(biāo)系中的圖象大致為()A. B.C. D.2、對于反比例函數(shù)y=﹣,下列說法錯誤的是()A.圖象經(jīng)過點(1,﹣5)B.圖象位于第二、第四象限C.當(dāng)x<0時,y隨x的增大而減小D.當(dāng)x>0時,y隨x的增大而增大3、若關(guān)于的一元二次方程的兩根分別為,,則二次函數(shù)的對稱軸為直線(

)A. B. C. D.4、二次函數(shù)y=ax2+bx+c的部分圖象如圖所示,由圖象可知該拋物線與x軸的交點坐標(biāo)是(

)A.(﹣1,0)和(5,0) B.(1,0)和(5,0)C.(0,﹣1)和(0,5) D.(0,1)和(0,5)5、如圖,在正方形網(wǎng)格上有5個三角形(三角形的頂點均在格點上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,與①相似的三角形是(

)A.②④ B.②⑤ C.③④ D.④⑤6、在同一直角坐標(biāo)系中,一次函數(shù)y=﹣kx+1與二次函數(shù)y=x2+k的大致圖象可以是()A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論正確的有()A.2a+b<0 B.a(chǎn)bc>0 C.4a﹣2b+c>0 D.a(chǎn)+c>02、如圖,正方形ABCD的邊長為8,點E、F分別在邊AD、BC上,將正方形沿EF折疊,使點A落在邊CD上的A′處,點B落在B′處,A′B′交BC于點G.下列結(jié)論正確的是(

)A.當(dāng)A′為CD中點時,tan∠DA′E=B.當(dāng)A′D∶DE∶A′E=3∶4∶5時,A′C=C.連接AA′,則AA′=EFD.當(dāng)A′(點A′不與C、D重合)在CD上移動時,△A′CG周長隨著A′位置變化而變化3、如圖,在△ABC中,點D、E分別在邊AB、AC上,且BD=2AD,CE=2AE,則下列結(jié)論中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE4、不能說明△ABC∽△A’B’C’的條件是(

)A.或 B.且C.且 D.且5、如圖,,下列線段比值等于的是(

)A. B. C. D.6、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應(yīng)值如下表:x…-2-1012……tm22n…已知.則下列結(jié)論中,正確的是(

)A. B.和是方程的兩個根C. D.(s取任意實數(shù))7、如圖,正方形ABCD,點E在邊AB上,且AE:EB=2:3,過點A作DE的垂線,垂足為I,交BC于點F,交BD于點H,延長DC至G,使CG=DC,連接GI,EH.下列結(jié)論正確的是(

)A. B. C. D.第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,D是△ABC的邊BC上一點,,,.如果的面積為15,那么的面積為______.2、如圖,點A是反比例函數(shù)圖象上一點,軸于點C且與反比例函數(shù)的圖象交于點B,,連接OA,OB,若的面積為6,則_________.3、如圖,某建筑物BC直立于水平地面,AC=9m,要建造階梯AB,使每階高不超過20cm,則此階梯最少要建_____階.(最后一階的高度不足20cm時,按一階算,取1.732)4、如圖,點P,A,B,C在同一平面內(nèi),點A,B,C在同一直線上,且PC⊥AC,在點A處測得點P在北偏東60°方向上,在點B處測得點P在北偏東30°方向上,若AP=12千米,則A,B兩點的距離為___千米.5、小明的身高為1.6,他在陽光下的影長為2,此時他旁邊的旗桿的影長為15,則旗桿的高度為_______.6、如圖,在平面直角坐標(biāo)系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連接BD,則對角線BD的最小值為_____.7、如圖,點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,垂足為B,△OAB的面積為6.若點P(a,4)也在此函數(shù)的圖象上,則a=_____.四、解答題(6小題,每小題10分,共計60分)1、某校舉行田徑運動會,學(xué)校準(zhǔn)備了某種氣球,這些氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓是氣體體積的反比例函數(shù),其圖象如圖所示.(1)求這一函數(shù)的解析式.(2)當(dāng)氣體的體積為時,氣壓是多少?(3)當(dāng)氣球內(nèi)的氣壓大于時,氣球會將爆炸,為了安全起見,氣體的體積應(yīng)不小于多少?2、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).3、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當(dāng)其中一個動點到達(dá)端點時,另一個動點也隨之停止運動,設(shè)運動時間為t(s).(1)當(dāng)t為何值時,四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時,PQ與⊙O相切?4、在矩形中,于點,點是邊上一點.(1)若平分,交于點,PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.5、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?6、如圖,在△ABC和△ADB中,∠ABC=∠ADB=90°,AC=5,AB=4,當(dāng)BD的長是多少時,圖中的兩個直角三角形相似?-參考答案-一、單選題1、A【解析】【分析】由二次函數(shù)的解析式可知,二次函數(shù)圖象經(jīng)過原點,則只有選項A,D可能正確,B,C不符合舍去,然后對A,D選項,根據(jù)二次函數(shù)的圖象確定a和b的符號,然后根據(jù)一次函數(shù)的性質(zhì)看一次函數(shù)圖象的位置是否正確,若正確,說明它們可在同一坐標(biāo)系內(nèi)存在.【詳解】解:由二次函數(shù)的解析式可知,二次函數(shù)圖象經(jīng)過原點,則只有選項A,D符合,B,C不符合舍去,A、由二次函數(shù)y=ax2+bx的圖象得a>0,再根據(jù)>0得到b<0,則一次函數(shù)y=ax+b經(jīng)過第一、三、四象限,所以A選項正確;D、由二次函數(shù)y=ax2+bx的圖象得a<0,再根據(jù)<0得到b<0,則一次函數(shù)y=ax+b經(jīng)過第二、三、四象限,所以D選項錯誤.故選:A.【考點】本題考查了二次函數(shù)的圖象:二次函數(shù)的圖象為拋物線,可能利用列表、描點、連線畫二次函數(shù)的圖象.也考查了二次函數(shù)圖象與系數(shù)的關(guān)系.2、C【解析】【分析】根據(jù)題目中的函數(shù)解析式和反比例函數(shù)的性質(zhì),可以判斷各個選項中的說法是否正確,從而可以解答本題.【詳解】解:反比例函數(shù)y=﹣,A、當(dāng)x=1時,y=﹣=﹣5,圖像經(jīng)過點(1,-5),故選項A不符合題意;B、∵k=﹣5<0,故該函數(shù)圖象位于第二、四象限,故選項B不符合題意;C、當(dāng)x<0時,y隨x的增大而增大,故選項C符合題意;D、當(dāng)x>0時,y隨x的增大而增大,故選項D不符合題意;故選C.【考點】本題考查的是反比例函數(shù)的性質(zhì),熟練掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)兩根之和公式可以求出對稱軸公式.【詳解】解:∵一元二次方程ax2+bx+c=0的兩個根為?2和4,∴x1+x2=?=2.∴二次函數(shù)的對稱軸為x=?=×2=1.故選:C.【考點】本題考查了求二次函數(shù)的對稱軸,要求熟悉二次函數(shù)與一元二次方程的關(guān)系和兩根之和公式,并熟練運用.4、A【解析】【分析】首先根據(jù)圖像得出拋物線的對稱軸和其中一個交點坐標(biāo),然后根據(jù)二次函數(shù)的對稱性即可求得另一個交點坐標(biāo).【詳解】解:由圖像可得,拋物線的對稱軸為,與x軸的一個交點坐標(biāo)為(5,0),∵拋物線與x軸的兩個交點關(guān)于對稱軸對稱,∴拋物線與x軸的另一個交點坐標(biāo)為(﹣1,0),故選:A.【考點】此題考查了二次函數(shù)與x軸的交點,二次函數(shù)的對稱性,解題的關(guān)鍵是根據(jù)二次函數(shù)的對稱性求出與x軸的另一個交點坐標(biāo).5、A【解析】【分析】根據(jù)兩邊成比例夾角相等兩三角形相似即可判斷.【詳解】解:由題意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故選:A.【考點】本題考查相似三角形的判定,解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題.6、A【解析】【分析】二次函數(shù)圖象與y軸交點的位置可確定k的正負(fù),再利用一次函數(shù)圖象與系數(shù)的關(guān)系可找出一次函數(shù)y=-kx+1經(jīng)過的象限,對比后即可得出結(jié)論.【詳解】解:由y=x2+k可知拋物線的開口向上,故B不合題意;∵二次函數(shù)y=x2+k與y軸交于負(fù)半軸,則k<0,∴﹣k>0,∴一次函數(shù)y=﹣kx+1的圖象經(jīng)過經(jīng)過第一、二、三象限,A選項符合題意,C、D不符合題意;故選:A.【考點】本題考查了二次函數(shù)的圖象、一次函數(shù)圖象以及一次函數(shù)圖象與系數(shù)的關(guān)系,根據(jù)二次函數(shù)的圖象找出每個選項中k的正負(fù)是解題的關(guān)鍵.二、多選題1、AD【解析】【分析】結(jié)合圖象,根據(jù)函數(shù)的開口方向、與y軸的交點、對稱軸的位置、和當(dāng)x=-2時,x=-1時,對應(yīng)y值的大小依次可判斷.【詳解】解:根據(jù)開口方向可知,根據(jù)圖象與y軸的交點可知,根據(jù)對稱軸可知:,∴,∴,,故A選項正確;∴abc<0,故B選項錯誤;根據(jù)圖象可知,當(dāng)x=-2時,,故C選項錯誤;根據(jù)圖象可知,當(dāng)x=-1時,,∴,故D選項正確.故選:AD.【考點】本題考查了二次函數(shù)圖象判定式子的正負(fù).二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點確定,注意特殊點的函數(shù)值.2、ABC【解析】【分析】A.當(dāng)A′為CD中點時,設(shè)A'E=AE=x,則DE=8﹣x,根據(jù)勾股定理列出方程求解,可推出A正確;B.當(dāng)△A'DE三邊之比為3:4:5時,假設(shè)A'D=3a,DE=4a,A'E=5a,根據(jù)AD=AE+DE=8,可求得a的值,進(jìn)一步求得A'D=,即可判斷出B正確;C.過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,證明△AA′D≌△EFM(ASA),即得C正確;D.過點A作AH⊥A'G,垂足為H,連接A'A,AG,先證△AA'D≌△AA'H,可得AD=AH,A'D=A'H,再證Rt△ABG≌Rt△AHG,可得HG=BG,由此證得△A'CG周長=16,即可得出D錯誤.【詳解】解:∵A′為CD中點,正方形ABCD的邊長為8,∴AD=8,A'D=CD=4,∠D=90o,∵正方形沿EF折疊,∴A'E=AE,∴設(shè)A'E=AE=x,則DE=8﹣x,∵在Rt△A'DE中,A'D2+DE2=A'E2,∴42+(8﹣x)2=x2,解得:x=5,∴AE=5,DE=3,∴tan∠DA'E=,故A正確;當(dāng)△A'DE三邊之比為3:4:5時,假設(shè)A'D=3a,DE=4a,A'E=5a,則AE=A'E=5a,∵AD=AE+DE=8,∴5a+4a=8,解得:a=,∴A'D=3a=,A'C=CD﹣A'D=8﹣=,故B正確;如圖1,過點E作EM⊥BC,垂足為M,連接A'A交EM,EF于點N,Q,∴EM∥CD,EM=CD=AD,∴∠AEN=∠D=90°,由翻折可知:EF垂直平分AA′,∴∠AQE=90°,∴∠EAN+∠ANE=∠QEN+∠ANE=90°,∴∠EAN=∠QEN,在△AA'D和△EFM中,,∴△AA′D≌△EFM(ASA),∴AA'=EF,故C正確;如圖2,過點A作AH⊥A'G,垂足為H,連接A'A,AG,則∠AHA'=∠AHG=90°,∵折疊,∴∠EA'G=∠EAB=90°,A'E=AE,∵∠D=90o∴∠EAA'+∠DA'A=90o,∴∠AA'G=∠DA'A,∴△AA'D≌△AA'H(AAS),∴AD=AH,A'D=A'H,∵AD=AB,∴AH=AB,在Rt△ABG與Rt△AHG中,,∴Rt△ABG≌Rt△AHG(HL),∴HG=BG,∴△A'CG周長=A'C+A'G+CG=A'C+A'H+HG+CG=A'C+A'D+BG+CG=CD+BC=8+8=16,∴當(dāng)A'在CD上移動時,△A'CG周長不變,故D錯誤.故選:ABC【考點】本題屬于幾何綜合題,考查了正方形的性質(zhì),折疊的性質(zhì),勾股定理,全等三角形的判定及性質(zhì),熟練掌握相關(guān)圖形的性質(zhì)是解決本題的關(guān)鍵.3、ABD【解析】【分析】由已知條件易證DE∥BC,則△ABC∽△ADE,再由相似三角形的性質(zhì)即可得到問題的選項.【詳解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正確;∴△ABC∽△ADE,故A正確;∴DE:BC=AD:AB=1:3,故C錯誤;∴S△ABC=9S△ADE故D正確,∴其中成立的jABD,故選ABD.【考點】本題考查了平行四邊形的性質(zhì)以及相似三角形的判定和性質(zhì),證明DE∥BC是解題的關(guān)鍵.4、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關(guān)鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應(yīng)成比例且夾角相等的兩個三角形相似;三邊對應(yīng)成比例的兩個三角形相似;兩角對應(yīng)相等的兩個三角形相似.5、CD【解析】【分析】根據(jù)余弦等于鄰邊比斜邊,可得答案.【詳解】在中,在中,故選:C、D.【考點】本題考查了解直角三角形,掌握直角三角形的邊角之間的關(guān)系是解題的關(guān)鍵.6、BC【解析】【分析】由表中數(shù)據(jù),結(jié)合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結(jié)合拋物線對稱軸為:,得出,由,,結(jié)合二次函數(shù)圖象性質(zhì),逐一分析各個選項,即可作出相應(yīng)的判斷.【詳解】解:由表格數(shù)據(jù)可知,當(dāng)時,,將點代入中,可得.由表格數(shù)據(jù)可知,當(dāng)時,;當(dāng)時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時,對應(yīng)的函數(shù)值相等,∵時,對應(yīng)函數(shù)值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點和,將點和分別代入二次函數(shù)解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數(shù),故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.7、ABD【解析】【分析】證明△BAF≌△ADE,可判斷選項A和選項B,設(shè)AE=2a,則EB=3a,正方形ABCD的邊長為5a,求得BH=a,DH=a,利用反證法判斷選項C;利用相似三角形的性質(zhì)以及三角函數(shù)求得IG=a,即可判斷選項D.【詳解】解:∵AE:EB=2:3,∴設(shè)AE=2a,則EB=3a,正方形ABCD的邊長為5a,∵四邊形ABCD是正方形,AI⊥DE,∴AD=AB,∠DAB=∠ABF=∠AID=90°,∴∠BAF=90°-∠DAI=∠ADE,∴△BAF≌△ADE,∴BF=AE,故選項A正確;∴S△BAF=S△ADE,∴S△BAF-S△AEI=S△ADE-S△AEI,即S△ADI=S四邊形BFIE,故選項B正確;∵四邊形ABCD是正方形,邊長為5a,∴BD=5a,BF∥AD,∴,∴BH=a,DH=a,假設(shè)EH⊥BD,則△BHE是等腰直角三角形,則BE=BH=3a,∴假設(shè)EH⊥BD不成立,故選項C錯誤;過點I作IM⊥AD于點M,過點I作IN⊥DC于點N,∵四邊形ABCD是正方形,∴∠ADC=90°,∴四邊形IMDN是矩形,∵DE=a,AE×AD=DE×AI,∴AI=a,∴DI==a,∵sin∠ADI=,cos∠ADI=,∴IM=a,DM=a,∵CG=DC,∴DG=a,∴NG=a,IN=DM=a,∴IG=a,∴IG=DG.故選項D正確;故選:ABD.【考點】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,三、填空題1、5【解析】【分析】先證明△ACD∽△BCA,再根據(jù)相似三角形的性質(zhì)得到:△ACD的面積:△ABC的面積為1:4,再結(jié)合△ABD的面積為15,然后求出△ACD的面積即可.【詳解】∵,,∴,∵,,∴,∴的面積,故答案是:5.【考點】本題主要考查了相似三角形的判定和性質(zhì)、掌握相似三角形的面積比等于相似比的平方是解答本題的關(guān)鍵.2、【解析】【分析】利用反比例函數(shù)比例系數(shù)k的幾何意義得到S△AOC=||=-,S△BOC=||=-,利用AB=3BC得到S△ABO=3S△OBC=6,所以-=2,解得=-4,再利用-=6+2得=-16,然后計算+的值.【詳解】解:∵AC⊥x軸于點C,與反比例函數(shù)y=(x<0)圖象交于點B,而<0,<0,∴S△AOC=||=-,S△BOC=||=-,∵AB=3BC,∴S△ABO=3S△OBC=6,即-=2,解得=-4,∵-=6+2,解得=-16,∴+=-16-4=-20.故答案為:-20.【考點】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義:在反比例函數(shù)的圖象上任意一點向坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是|k|,且保持不變.3、26.【解析】【詳解】在Rt△ABC中,根據(jù)tan30°=BC:AC,即可求得BC=tan30°×AC=×9m=3m≈5.192m=519.2cm.又因519.2÷20≈26,所以即至少為26階.4、【解析】【分析】根據(jù)題意和題目中的數(shù)據(jù),可以計算出AC和BC的長,然后即可得到AB的長,從而可以解答本題.【詳解】解:∵PC⊥AC,在點A處測得點P在北偏東60°方向上,∴∠PCA=90°,∠PAC=30°,∵AP=12千米,∴PC=6千米,AC=6千米,∵在點B處測得點P在北偏東30°方向上,∠PCB=90°,PC=6千米,∴∠PBC=60°,∴千米,∴(千米),故答案為:.【考點】本題考查解直角三角形的應(yīng)用-方向角問題,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.5、12【解析】【分析】設(shè)這根旗桿的高度為xm,利用某一時刻物體的高度與它的影長的比相等得到,然后利用比例性質(zhì)求x即可.【詳解】設(shè)這根旗桿的高度為xm,根據(jù)題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點】本題考查了相似三角形的應(yīng)用:利用影長測量物體的高度;利用相似測量河的寬度(測量距離);借助標(biāo)桿或直尺測量物體的高度.6、1【解析】【分析】由矩形的性質(zhì)可知BD=AC,再結(jié)合頂點到x軸的距離最近可知當(dāng)點A在頂點處時滿足條件,求得拋物線的頂點坐標(biāo)即可求得答案.【詳解】解:∵AC⊥x軸,∴當(dāng)點A為拋物線頂點時,AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點坐標(biāo)為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點】本題主要考查了二次函數(shù)的性質(zhì)及矩形的性質(zhì),確定出AC最小時的位置是解題的關(guān)鍵.7、3【解析】【分析】根據(jù)反比例函數(shù)的幾何意義,可得,從而得到,再將點P(a,4)代入解析式,即可求解.【詳解】解:∵點A是反比例函數(shù)y=(x>0)圖象上的一點,AB垂直于x軸,∴,∵△OAB的面積為6.∴,即,∴反比例函數(shù)的解析式為,∵點P(a,4)也在此函數(shù)的圖象上,∴,解得:.故答案為:3【考點】本題主要考查了反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)的幾何意義,反比例函數(shù)的圖象和性質(zhì),利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.四、解答題1、(1);(2)60KPa;(3)【解析】【分析】(1)設(shè),A(0.5,120)在反比例函數(shù)上,即可求得反比例函數(shù)解析式;(2)把V=1代入(1)中的函數(shù)關(guān)系式求P即可;(3)依題意P≤150,即,解不等式即可.【詳解】(1)設(shè),∵A(0.5,120)在反比例函數(shù)上∴∴k=60∴;故答案為:(2)當(dāng)V=1m3時,=60(KPa);故答案為:60KPa(3)當(dāng)P>150KPa時,氣球?qū)⒈?,∴P≤150,∴,解得V0.4(m3).故答案為:為了安全起見,氣體的體積應(yīng)不小于0.4(m3).【考點】本題考查了反比例函數(shù)的應(yīng)用,將實際的問題轉(zhuǎn)化為數(shù)學(xué)問題,建立反比例函數(shù)的數(shù)學(xué)模型.要熟練掌握物理或化學(xué)學(xué)科中的一些具有反比例函數(shù)關(guān)系的公式.同時體會數(shù)學(xué)中的轉(zhuǎn)化思想.2、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時,S有最大值,最大值為;(3)存在,點P的坐標(biāo)為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標(biāo),將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標(biāo),設(shè)直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點P的坐標(biāo),則點G的坐標(biāo)可表示,點H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時,S有最大值,最大值為.(3)存在,如圖所示,設(shè)點P的坐標(biāo)為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當(dāng)t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標(biāo)為(4,0)或(,0).【考點】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.3、(1)當(dāng)時,四邊形PQCD為平行四邊形;(2)當(dāng)t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當(dāng)時,四邊形PQCD為平行四邊形;(2)設(shè)PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12c

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論