版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》必考點(diǎn)解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,,點(diǎn)在邊上,則下列結(jié)論中一定成立的是(
)A. B.C. D.2、如圖,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是()A.≌ B.≌C.≌ D.≌3、有一個小口瓶(如圖所示),想知道它的內(nèi)徑是多少,但是尺子不能伸到里邊直接測,于是拿兩根長度相同的細(xì)木條,把兩根細(xì)木條的中點(diǎn)固定在一起,木條可以繞中點(diǎn)轉(zhuǎn)動,這樣只要量出AB的長,就可以知道玻璃瓶的內(nèi)徑是多少,那么△OAB≌△OCD理由是(
)A.邊角邊 B.角邊角 C.邊邊邊 D.角角邊4、如圖,,,要使,直接利用三角形全等的判定方法是A.AAS B.SAS C.ASA D.SSS5、如圖,△ABC是邊長為4的等邊三角形,點(diǎn)P在AB上,過點(diǎn)P作PE⊥AC,垂足為E,延長BC至點(diǎn)Q,使CQ=PA,連接PQ交AC于點(diǎn)D,則DE的長為()A.1 B.1.8 C.2 D.2.5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、已知:如圖,AC=DC,∠1=∠2,請?zhí)砑右粋€已知條件:_____,使ABCDEC.2、如圖,在中,、的平分線相交于點(diǎn)I,且,若,則的度數(shù)為______度.3、如圖,在△ABC中,BD=CD,BE交AD于F,AE=EF,若BE=7CE,,則BF=_______.4、已知∠AOB=60°,以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)P,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)為__________.5、如圖,在和中,,,直線交于點(diǎn)M,連接.以下結(jié)論:①;②;③;④平分.其中正確的是___________(填序號).三、解答題(5小題,每小題10分,共計(jì)50分)1、△ABC、△DPC都是等邊三角形.(1)如圖1,求證:AP=BD;(2)如圖2,點(diǎn)P在△ABC內(nèi),M為AC的中點(diǎn),連PM、PA、PB,若PA⊥PM,且PB=2PM.①求證:BP⊥BD;②判斷PC與PA的數(shù)量關(guān)系并證明.2、如圖,沿AC方向開山修路,為了加快施工進(jìn)度,要在山的另一邊同時施工,工人師傅在AC上取一點(diǎn)B,在小山外取一點(diǎn)D,連接BD,并延長使DF=BD,過F點(diǎn)作AB的平行線段MF,連接MD,并延長,在其延長線上取一點(diǎn)E,使DE=DM,在E點(diǎn)開工就能使A、C、E成一條直線,請說明其中的道理;3、如圖,在△ABC中,AB=BC,∠ABC=60°,線段AC與AD關(guān)于直線AP對稱,E是線段BD與直線AP的交點(diǎn).(1)若∠DAE=15°,求證:△ABD是等腰直角三角形;(2)連CE,求證:BE=AE+CE.4、小明和小亮在學(xué)習(xí)探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?(1)請你幫他們解答,并說明理由.(2)細(xì)心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點(diǎn)E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)(3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點(diǎn)P,也有第2題類似的結(jié)論.請你幫他畫出圖形,并證明結(jié)論.5、如圖,點(diǎn)A,F(xiàn),E,D在一條直線上,AF=DE,CF∥BE,AB∥CD.求證BE=CF.-參考答案-一、單選題1、C【解析】【分析】根據(jù)全等三角形的性質(zhì)可直接進(jìn)行排除選項(xiàng).【詳解】解:∵,∴AB=AD,BC=DE,AC=AE,∠B=∠ADE,∠C=∠E,∴∠ABD=∠ADB,故A、B、D都是錯誤的,C選項(xiàng)正確;故選C.【考點(diǎn)】本題主要考查全等三角形的性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關(guān)鍵.2、B【解析】【分析】觀察圖形,運(yùn)用SAS可判定△ABO與△ADO全等.【詳解】解:∵AB=AD,∠BAO=∠DAO,AO是公共邊,
∴△ABO≌△ADO(SAS).故選B.【考點(diǎn)】本題考查全等三角形的判定,屬基礎(chǔ)題,比較簡單.3、A【解析】【詳解】解:∵根據(jù)SAS得:△OAB≌△ODC.故選A.4、B【解析】【分析】根據(jù)平行線性質(zhì)得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根據(jù)全等三角形的判定定理SAS即可推出△ABD≌△CDB,從而推出∠A=∠C,即可得出答案.【詳解】,,在和中,,≌,,故選B.【考點(diǎn)】本題考查了平行線性質(zhì)、全等三角形的判定與性質(zhì)的應(yīng)用,熟練掌握全等三角形的判定與性質(zhì)定理是解題的關(guān)鍵.5、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點(diǎn)】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.二、填空題1、【解析】【分析】已知給出了∠1=∠2,可得三角形中一對應(yīng)角相等,又有一邊對應(yīng)相等,根據(jù)邊角邊判定定理,補(bǔ)充BC=AC可得ABCDEC答案可得.【詳解】解:∵∠1=∠2,∴∠BCA=∠ECD,又AC=DC,添加BC=CE,∴ABCDEC(SAS).故答案為:BC=EC.【考點(diǎn)】此題考查了三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解題的關(guān)鍵是添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件.2、70【解析】【分析】在BC上取點(diǎn)D,令,利用SAS定理證明得到,,再利用得到,所以,再由角平分線可得,利用以及AI平分可知.【詳解】解:在BC上取點(diǎn)D,令,連接DI,BI,如下圖所示:∵CI平分∴在和中∴∴,∵∴,即:∵AI平分、CI平分,∴BI平分,∴∵∴故答案為:70.【考點(diǎn)】本題考查角平分線,全等三角形的判定及性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,利用,在BC上取點(diǎn)D等于AC,作出輔助線是解本題的關(guān)鍵點(diǎn),也是難點(diǎn).3、或【解析】【分析】延長AD至G,使DG=AD,連接BG,可證明,則BG=AC,,根據(jù)AE=EF,得到,可證出,即得出AC=BF,從而得出BF的長.【詳解】解:如圖,延長AD至G,使DG=AD,連接BG,在和中,∴∴BG=AC,,又∵AE=EF,∴,又∵,∴,∴,∴BG=BF,∴AC=BF,又∵BE=7CE,AE=,∴BF+EF=,即BF+=,解得BF=.故答案為:【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),證明線段相等,一般轉(zhuǎn)化為證明三角形全等,正確地作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.4、或【解析】【分析】以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,則OP為的平分線,以O(shè)P為邊作,則為作或的角平分線,即可求解.【詳解】解:以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,得到OP為的平分線,再以O(shè)P為邊作,則為作或的角平分線,所以或.故答案為:或.【考點(diǎn)】本題考查的是復(fù)雜作圖,主要要理解作圖是在作角的平分線,同時要考慮以O(shè)P為邊作的兩種情況,避免遺漏.5、①②③【解析】【分析】由SAS證明△AOC≌△BOD得出∠OAC=∠OBD,AC=BD,①②正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OBD=∠OAC+∠AOB,得出∠AMB=∠AOB=α,可得③正確;作OG⊥AM于G,OH⊥DM于H,利用全等三角形的對應(yīng)高相等得出OG=OH,由角平分線的判定方法得∠AMO=∠DMO,假設(shè)OM平分∠BOC,則可求出∠AOM=∠DOM,由全等三角形的判定定理可得△AMO≌△DMO,得AO=OD,而OC=OD,所以O(shè)A=OC,而OA<OC,故④錯誤;即可得出結(jié)論.【詳解】解:∵∠AOB=∠COD=α,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OAC=∠OBD,AC=BD,故①②正確;由三角形的內(nèi)角和定理得:∠AMB+∠OBD=∠OAC+∠AOB,∵∠OAC=∠OBD,∴∠AMB=∠AOB=α,,故③正確;作OG⊥AM于G,OH⊥DM于H,如圖所示,△AOC≌△BOD,∴結(jié)合全等三角形的對應(yīng)高可得:OG=OH,∴MO平分∠AMD,∴∠AMO=∠DMO,假設(shè)OM平分∠BOC,則∠BOM=∠COM,∵∠AOB=∠COD,∴∠AOB+∠BOM=∠COD+∠COM,即∠AOM=∠DOM,在△AMO與△DMO中,,∴△AMO≌△DMO(ASA),∴OA=OD,∵OC=OD,∴OA=OC,而OA<OC,故④錯誤;正確的個數(shù)有3個;故答案為:①②③.【考點(diǎn)】本題屬于三角形的綜合題,是中考填空題的壓軸題,本題考查了全等三角形的判定與性質(zhì)、三角形的外角性質(zhì)、角平分線的判定等知識,證明三角形全等是解題的關(guān)鍵.三、解答題1、(1)證明過程見解析;(2)①證明過程見解析;②PC=2PA,理由見解析.【解析】【分析】(1)證明△BCD≌△ACP(SAS),可得結(jié)論;(2)①如圖2中,延長PM到K,使得MK=PM,連接CK.證明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再證明△PDB≌△PCK(SSS),可得結(jié)論;②結(jié)論:PC=2PA.想辦法證明∠DPB=30°,可得結(jié)論.(1)證明:如圖1中,∵△ABC,△CDP都是等邊三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP;(2)證明:如圖2中,延長PM到K,使得MK=PM,連接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可證△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:結(jié)論:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,設(shè)∠DPB=∠CPK=x,則∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA.【考點(diǎn)】本題屬于三角形綜合題,考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),直角三角形30°角的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,關(guān)注全等三角形解決問題.2、詳見解析.【解析】【詳解】試題分析:首先根據(jù)題意得出△BDE和△FDM全等,從而得出∠BEM=∠DMF,即BE∥MF,最后根據(jù)過直線外一點(diǎn)有且只有一條直線與已知直線平行得出答案.試題解析:∵BD=DF,DE=DM,∠BDE=∠FDM,∴△BDE≌△FDM,∴∠BEM=∠DMF,∴BE∥MF,∵AB∥MF,根據(jù)過直線外一點(diǎn)有且只有一條直線與已知直線平行,∴A、C、E在一條直線上.3、(1)見解析;(2)見解析【解析】【分析】(1)首先根據(jù)題意確定出△ABC是等邊三角形,然后根據(jù)等邊三角形的性質(zhì)推出∠BAC=60°,再根據(jù)線段AC與AD關(guān)于直線AP對稱,以及∠DAE=15°,推出∠BAD=90°,即可得出結(jié)論;(2)利用“截長補(bǔ)短”的方法在BE上取點(diǎn)F,使BF=CE,連接AF,根據(jù)題目條件推出△ABF≌△ACE,得出AF=AE,再進(jìn)一步推出∠AEF=60°,可得到△AFE是等邊三角形,則得到AF=FE,從而推出結(jié)論即可.【詳解】證明:(1)∵在△ABC中,AB=BC,∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=BC,∠BAC=∠ABC=∠ACB=60°,∵線段AC與AD關(guān)于直線AP對稱,∴∠CAE=∠DAE=15°,AD=AC,∴∠BAE=∠BAC+∠CAE=75°,∴∠BAD=90°,∵AB=AC=AD,∴△ABD是等腰直角三角形;(2)在BE上取點(diǎn)F,使BF=CE,連接AF,∵線段AC與AD關(guān)于直線AP對稱,∴∠ACE=∠ADE,AD=AC,∵AD=AC=AB,∴∠ADB=∠ABD=∠ACE,在△ABF與△ACE中,∴△ABF≌△ACE(SAS),∴AF=AE,∵AD=AB,∴∠D=∠ABD,又∠CAE=∠DAE,∴,∴在△AFE中,AF=AE,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理管理中的團(tuán)隊(duì)建設(shè)與領(lǐng)導(dǎo)力
- VTE護(hù)理中的患者安全
- 大豐市小海中學(xué)高二生物三同步課程講義第講植物的激素調(diào)節(jié)
- 2025秋人教版初中美術(shù)九年級上冊知識點(diǎn)及期末測試卷及答案
- 2025年保密信息交換協(xié)議
- 基于人工智能的地理信息挖掘與分析
- 復(fù)雜背景手勢追蹤
- 基于同態(tài)加密的圖像敏感信息處理
- 土地權(quán)屬登記信息化
- 2026 年中職康復(fù)治療技術(shù)(康復(fù)管理)試題及答案
- 冷庫安全培訓(xùn)演練課件
- 農(nóng)業(yè)產(chǎn)業(yè)新質(zhì)生產(chǎn)力
- 研磨鉆石的專業(yè)知識培訓(xùn)課件
- 2025年傳達(dá)學(xué)習(xí)醫(yī)療機(jī)構(gòu)重大事故隱患判定清單會議記錄
- 機(jī)動車檢驗(yàn)機(jī)構(gòu)管理年度評審報(bào)告
- 百度無人機(jī)基礎(chǔ)知識培訓(xùn)課件
- 2025至2030中國家用燃?xì)鈭?bào)警器市場現(xiàn)狀發(fā)展分析及發(fā)展戰(zhàn)略規(guī)劃報(bào)告
- 金融行業(yè)行政管理社會調(diào)查報(bào)告范文
- 2025年中國高油玉米數(shù)據(jù)監(jiān)測報(bào)告
- 水印江南美食街招商方案
- 二零二五年度綠色生態(tài)住宅小區(qū)建設(shè)工程合同協(xié)議
評論
0/150
提交評論