中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫附參考答案詳解(黃金題型)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫附參考答案詳解(黃金題型)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫附參考答案詳解(黃金題型)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫附參考答案詳解(黃金題型)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》高分題庫附參考答案詳解(黃金題型)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》高分題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列說法:(1)長度相等的弧是等弧;(2)弦不包括直徑;(3)劣弧一定比優(yōu)弧短;(4)直徑是圓中最長的弦.其中正確的有(

)A.1個 B.2個 C.3個 D.4個2、如圖,在中,,AB=AC=5,點在上,且,點E是AB上的動點,連結(jié),點,G分別是BC,DE的中點,連接,,當(dāng)AG=FG時,線段長為(

)A. B. C. D.43、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點,連接OE并延長,交⊙O于點D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°4、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°5、已知中,,,,點P為邊AB的中點,以點C為圓心,長度r為半徑畫圓,使得點A,P在⊙C內(nèi),點B在⊙C外,則半徑r的取值范圍是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,已知是的直徑,且,弦,點是弧上的點,連接、,若,則的長為______.2、如圖,在⊙O中,,,則圖中陰影部分的面積是_________.(結(jié)果保留)3、如圖,直線、相交于點,半徑為1cm的⊙的圓心在直線上,且與點的距離為8cm,如果⊙以2cm/s的速度,由向的方向運動,那么_________秒后⊙與直線相切.4、如圖,矩形ABCD的對角線交于點O,以點A為圓心,AB的長為半徑畫弧,剛好過點O,以點D為圓心,DO的長為半徑畫弧,交AD于點E,若AC=2,則圖中陰影部分的面積為_____.(結(jié)果保留π)5、如圖,在甲,,,,以點為圓心,的長為半徑作圓,交于點,交于點,陰影部分的面積為__________(結(jié)果保留).三、解答題(5小題,每小題10分,共計50分)1、問題探究(1)在中,,分別是與的平分線.①若,,如圖,試證明;②將①中的條件“”去掉,其他條件不變,如圖,問①中的結(jié)論是否成立?并說明理由.遷移運用(2)若四邊形是圓的內(nèi)接四邊形,且,,如圖,試探究線段,,之間的等量關(guān)系,并證明.2、等邊三角形的邊長為1厘米,面積為0.43平方厘米.以點為圓心,長為半徑在三角形外畫弧,交的延長線于點,形成扇形;以點為圓心,長為半徑畫弧,交的延長線于點,形成扇形;以點為圓心,長為半徑畫弧,交的延長線于點,形成扇形.(1)求所得的圖形的周長;(結(jié)果保留)(2)照此規(guī)律畫至第十個扇形,求所圍成的圖形的面積以及所畫出的所有弧長的和.(結(jié)果保留)3、已知:A、B、C、D是⊙O上的四個點,且,求證:AC=BD.4、如圖,在△ABC中,AB=AC,∠BAC與∠ABC的角平分線相交于點E,AE的延長線交△ABC的外接圓于點D,連接BD.(1)求證:∠BAD=∠DBC;(2)證明:點B、E、C在以點D為圓心的同一個圓上;(3)若AB=5,BC=8,求△ABC內(nèi)心與外心之間的距離.5、用反證法證明:一條線段只有一個中點.-參考答案-一、單選題1、A【解析】【分析】根據(jù)等弧的定義、弦的定義、弧的定義、分別判斷后即可確定正確的選項.【詳解】解:(1)長度相等的弧不一定是等弧,弧的度數(shù)必須相同,故錯誤;(2)直徑是圓中最長的弦,故(2)錯誤,(4)正確;(3)同圓或等圓中劣弧一定比優(yōu)弧短,故錯誤;正確的只有一個,故選:A.【考點】本題考查了圓的有關(guān)定義,能夠了解圓的有關(guān)知識是解答本題的關(guān)鍵,難度不大.2、A【解析】【分析】連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB,結(jié)合直角三角形斜邊中線等于斜邊的一半求得點A,D,F(xiàn),E四點共圓,∠DFE=90°,然后根據(jù)勾股定理及正方形的判定和性質(zhì)求得AE的長度,從而求解.【詳解】解:連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB∵在中,,點G是DE的中點,∴AG=DG=EG又∵AG=FG∴點A,D,F(xiàn),E四點共圓,且DE是圓的直徑∴∠DFE=90°∵在Rt△ABC中,AB=AC=5,點是BC的中點,∴CF=BF=,F(xiàn)N=FM=又∵FN⊥AC,F(xiàn)M⊥AB,∴四邊形NAMF是正方形∴AN=AM=FN=又∵,∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中,DE=故選:A.【考點】本題考查直徑所對的圓周角是90°,四點共圓及正方形的判定和性質(zhì)和用勾股定理解直角三角形,掌握相關(guān)性質(zhì)定理正確推理計算是解題關(guān)鍵.3、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識.正確理解題意是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.5、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點,得CP=,要使點A,P在⊙C內(nèi),r>3,r<4,從而確定r的取值范圍.【詳解】∵點A在⊙C內(nèi),∴r>3,∵點B在⊙C外,∴r<4,∴,故選:D.【考點】本題考查了點和圓的位置關(guān)系,利用數(shù)形結(jié)合思想是解題的關(guān)鍵.二、填空題1、9【解析】【分析】連接OC和OE,由同弧所對的圓周角等于圓心角的一半求出∠COB=60°,再在△COH中求出CH,最后由垂徑定理求出CD.【詳解】解:連接OC和OE,如下圖所示:由同弧所對的圓周角等于圓心角的一半可知,∠A=∠EOB,∠D=∠COE,∵∠A+∠D=30°,∴∠EOB+∠COE=∠COB=30°,∴∠COB=60°,∵CD⊥AB,∴△COH為30°,60°,90°的三角形,其三邊之比為,∴CH=,∴CD=2CH=9,故答案為:9.【考點】本題考查了圓周角定理及垂徑定理等相關(guān)知識點,本題的關(guān)鍵是求出∠COB=60°.2、【解析】【分析】由,根據(jù)圓周角定理得出,根據(jù)S陰影=S扇形AOB-可得出結(jié)論.【詳解】解:∵,∴,∴S陰影=S扇形AOB-,故答案為:.【考點】本題主要考查圓周角定理、扇形的面積計算,根據(jù)題意求得三角形與扇形的面積是解答此題的關(guān)鍵.3、3或5【解析】【分析】分類討論:當(dāng)點P在當(dāng)點P在射線OA時⊙P與CD相切,過P作PE⊥CD與E,根據(jù)切線的性質(zhì)得到PE=1cm,再利用含30°的直角三角形三邊的關(guān)系得到OP=2PE=2cm,則⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,即可得到⊙P移動所用的時間;當(dāng)點P在射線OB時⊙P與CD相切,過P作PE⊥CD與F,同前面一樣易得到此時⊙P移動所用的時間.【詳解】當(dāng)點P在射線OA時⊙P與CD相切,如圖,過P作PE⊥CD與E,∴PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P的圓心在直線AB上向右移動了(8-2)cm后與CD相切,∴⊙P移動所用的時間==3(秒);當(dāng)點P在射線OB時⊙P與CD相切,如圖,過P作PE⊥CD與F,∴PF=1cm,∵∠AOC=∠DOB=30°,∴OP=2PF=2cm,∴⊙P的圓心在直線AB上向右移動了(8+2)cm后與CD相切,∴⊙P移動所用的時間==5(秒).故答案為3或5.【考點】本題考查直線與圓的位置關(guān)系:直線與有三種位置關(guān)系(相切、相交、相離).也考查了切線的性質(zhì).解題關(guān)鍵是熟練掌握以上性質(zhì).4、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據(jù)題目中的數(shù)據(jù),可以求得AB、OA、DE的長,∠BAO和∠EDO的度數(shù),從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點】本題主要考查扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.5、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點】本題考查的是扇形面積計算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.三、解答題1、(1)①見解析;②結(jié)論成立,見解析;(2),見解析【解析】【分析】(1)①證明是等邊三角形,得出E、D為中點,從而證明;②在上截取,根據(jù)角平分線的性質(zhì),證明,,從而得到答案;(2)作點B關(guān)于的對稱點E,證明,從而得到,再根據(jù)AE、DC分別是、的角平分線,得到.【詳解】(1)①,,.又、分別是、的平分線.點D、E分別是、的中點.,..②結(jié)論成立,理由如下:設(shè)與交于點F,由條件,得,.又...∴.在上截?。伞連F=BF,∴...又∵CF=CF,∴.∴.(2),理由如下:∵四邊形是圓內(nèi)接四邊形,∴.∵,∴,,∴.∴.作點B關(guān)于的對稱點E,連結(jié),,的延長線與的延長線交于點M,與交于點F,∴,.∴.∴∴∴∵AE、DC分別是、的角平分線由②得.【考點】本題考查三角形、等邊三角形、全等三角形、圓的內(nèi)接四邊形的性質(zhì),解題的關(guān)鍵是熟練掌握三角形、等邊三角形、全等三角形、圓的內(nèi)接四邊形的相關(guān)知識.2、(1)厘米;(2)平方厘米,厘米.【解析】【分析】(1)本題按照弧長公式依次求解扇形ADC、扇形DBE、扇形ECF的弧長,最后對應(yīng)相加即可.(2)本題利用扇形面積公式求解第一個扇形至第三個扇形的面積,結(jié)合第一問各扇形弧長結(jié)果總結(jié)規(guī)律,得出普遍規(guī)律后將數(shù)值代入公式,累次相加即可求解.【詳解】(1)由已知得:扇形ADC的半徑長為1,圓心角為120°;扇形DBE半徑長為2,圓心角為120°;扇形ECF半徑長為3,圓心角為120°.故據(jù)弧長公式可得:扇形ADC弧長;扇形DBE弧長;扇形ECF弧長;故圖形CDEFC的周長為:.(2)根據(jù)扇形面積公式可得:第一個扇形的面積為,由上一問可知其弧長為;第二個扇形的面積為,弧長為;第三個扇形的面積為,弧長為;總結(jié)規(guī)律可得第個扇形面積為,第個扇形弧長為.故畫至第十個圖形所圍成的圖形面積和為:;所有的弧長和為:.【考點】本題考查扇形與弧長公式的延伸,出題角度較為新穎,解題關(guān)鍵在于需要根據(jù)圖形特點總結(jié)規(guī)律,其次注意計算即可.3、詳見解析【解析】【分析】先根據(jù)可得,再根據(jù)同圓中等弧所對的弦相等即得.【詳解】證明:∵∴∴【考點】本題考查圓心角定理推論,解題關(guān)鍵是熟知同圓或等圓中,等弧所對的弦相等.4、(1)見解析(2)見解析(3)【解析】【分析】(1)根據(jù)同弧所對的圓周角相等,可得,再由平分,得,從而證明結(jié)論;(2)由,得,再根據(jù),,得,從而有,即可證明;(3)由題意知為內(nèi)心,為外心,設(shè),,則,可求出的長,再根據(jù)勾股定理求出的長,而,從而得出答案.(1)解:證明:平分,,又,;(2)解:證明:,平分,,連接,,平分,,,,,,,點、、在以點為圓心的同一個圓上;(3)解:如圖:,,,,,,,,在中,,在中,設(shè),,則,即,解得:,即,為直徑,,在中,,,,為角平分線的交點,為內(nèi)心,為內(nèi)心與外心之間的距離,內(nèi)心與外心之間的距離為.【考點】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論