河北省邢臺市平鄉(xiāng)縣2025年中考沖刺卷數(shù)學試題含解析_第1頁
河北省邢臺市平鄉(xiāng)縣2025年中考沖刺卷數(shù)學試題含解析_第2頁
河北省邢臺市平鄉(xiāng)縣2025年中考沖刺卷數(shù)學試題含解析_第3頁
河北省邢臺市平鄉(xiāng)縣2025年中考沖刺卷數(shù)學試題含解析_第4頁
河北省邢臺市平鄉(xiāng)縣2025年中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河北省邢臺市平鄉(xiāng)縣2025年中考沖刺卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是某個幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐2.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F(xiàn)點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.123.如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°4.如果菱形的一邊長是8,那么它的周長是()A.16 B.32 C.163 D.3235.下列各數(shù):π,sin30°,﹣,其中無理數(shù)的個數(shù)是()A.1個 B.2個 C.3個 D.4個6.關于x的不等式x-b>0恰有兩個負整數(shù)解,則b的取值范圍是A. B. C. D.7.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm8.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結論錯誤的是()A. B. C. D.9.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a210.已知反比例函數(shù)下列結論正確的是()A.圖像經(jīng)過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當x>1時,y<111.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.12.如圖,已知直線l1:y=﹣2x+4與直線l2:y=kx+b(k≠0)在第一象限交于點M.若直線l2與x軸的交點為A(﹣2,0),則k的取值范圍是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在矩形ABCD中,AB=4,BC=9,點E是AD邊上一動點,將邊AB沿BE折疊,點A的對應點為A′,若點A′到矩形較長兩對邊的距離之比為1:3,則AE的長為_____.14.若一次函數(shù)y=﹣2(x+1)+4的值是正數(shù),則x的取值范圍是_______.15.如圖,一名滑雪運動員沿著傾斜角為34°的斜坡,從A滑行至B,已知AB=500米,則這名滑雪運動員的高度下降了_____米.(參考數(shù)據(jù):sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)16.化簡:①=_____;②=_____;③=_____.17.如圖,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E,則∠DAE=______.18.如圖1,AB是半圓O的直徑,正方形OPNM的對角線ON與AB垂直且相等,Q是OP的中點.一只機器甲蟲從點A出發(fā)勻速爬行,它先沿直徑爬到點B,再沿半圓爬回到點A,一臺微型記錄儀記錄了甲蟲的爬行過程.設甲蟲爬行的時間為t,甲蟲與微型記錄儀之間的距離為y,表示y與t的函數(shù)關系的圖象如圖2所示,那么微型記錄儀可能位于圖1中的()A.點MB.點NC.點PD.點Q三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,D、D為⊙O上兩點,CF⊥AB于點F,CE⊥AD交AD的延長線于點E,且CE=CF.(1)求證:CE是⊙O的切線;(2)連接CD、CB,若AD=CD=a,求四邊形ABCD面積.20.(6分)(1)計算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化簡:(a﹣)÷.21.(6分)如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點.(1)求該拋物線的解析式;(2)閱讀理解:在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1?k2=﹣1.解決問題:①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.22.(8分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數(shù);(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數(shù).23.(8分)如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;(2)把△A1B1C1繞點A1按逆時針方向旋轉90°,在網(wǎng)格中畫出旋轉后的△A1B2C2;(3)如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.24.(10分)某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時刻船與B港口之間的距離CB的長(結果保留根號).25.(10分)西安匯聚了很多人們耳熟能詳?shù)年兾髅朗常钊A和王濤同時去選美食,李華準備在“肉夾饃(A)、羊肉泡饃(B)、麻醬涼皮(C)、(biang)面(D)”這四種美食中選擇一種,王濤準備在“秘制涼皮(E)、肉丸胡辣湯(F)、葫蘆雞(G)、水晶涼皮(H)”這四種美食中選擇一種.(1)求李華選擇的美食是羊肉泡饃的概率;(2)請用畫樹狀圖或列表的方法,求李華和王濤選擇的美食都是涼皮的概率.26.(12分)觀察下列各個等式的規(guī)律:第一個等式:=1,第二個等式:=2,第三個等式:=3…請用上述等式反映出的規(guī)律解決下列問題:直接寫出第四個等式;猜想第n個等式(用n的代數(shù)式表示),并證明你猜想的等式是正確的.27.(12分)為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個矩形,左視圖是矩形,所以這個幾何體是三棱柱,故選A.考點:由三視圖判定幾何體.2、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點C關于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質是解答此題的關鍵.3、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點:1、平行線的性質;2、圓周角定理;3等腰三角形的性質4、B【解析】

根據(jù)菱形的四邊相等,可得周長【詳解】菱形的四邊相等∴菱形的周長=4×8=32故選B.本題考查了菱形的性質,并靈活掌握及運用菱形的性質5、B【解析】

根據(jù)無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù),找出無理數(shù)的個數(shù)即可.【詳解】sin30°=,=3,故無理數(shù)有π,-,故選:B.本題考查了無理數(shù)的知識,解答本題的關鍵是掌握無理數(shù)的三種形式:①開方開不盡的數(shù),②無限不循環(huán)小數(shù),③含有π的數(shù).6、A【解析】

根據(jù)題意可得不等式恰好有兩個負整數(shù)解,即-1和-2,再結合不等式計算即可.【詳解】根據(jù)x的不等式x-b>0恰有兩個負整數(shù)解,可得x的負整數(shù)解為-1和-2綜合上述可得故選A.本題主要考查不等式的非整數(shù)解,關鍵在于非整數(shù)解的確定.7、B【解析】

解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數(shù)值.8、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.9、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質,熟記性質與公式并理清指數(shù)的變化是解題的關鍵.10、B【解析】分析:直接利用反比例函數(shù)的性質進而分析得出答案.詳解:A.反比例函數(shù)y=,圖象經(jīng)過點(﹣1,﹣1),故此選項錯誤;B.反比例函數(shù)y=,圖象在第一、三象限,故此選項正確;C.反比例函數(shù)y=,每個象限內(nèi),y隨著x的增大而減小,故此選項錯誤;D.反比例函數(shù)y=,當x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數(shù)的性質,正確掌握反比例函數(shù)的性質是解題的關鍵.11、B【解析】試題分析:結合三個視圖發(fā)現(xiàn),應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.12、D【解析】

解:∵直線l1與x軸的交點為A(﹣1,0),∴﹣1k+b=0,∴,解得:.∵直線l1:y=﹣1x+4與直線l1:y=kx+b(k≠0)的交點在第一象限,∴,解得0<k<1.故選D.兩條直線相交或平行問題;一次函數(shù)圖象上點的坐標特征.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或【解析】

由,,得,所以.再以①和②兩種情況分類討論即可得出答案.【詳解】因為翻折,所以,,過作,交AD于F,交BC于G,根據(jù)題意,,.若點在矩形ABCD的內(nèi)部時,如圖則GF=AB=4,由可知.又..又....若則,..則...若則,..則...故答案或.本題主要考查了翻折問題和相似三角形判定,靈活運用是關鍵錯因分析:難題,失分原因有3點:(1)不能靈活運用矩形和折疊與動點問題疊的性質;(2)沒有分情況討論,由于點A′A′到矩形較長兩對邊的距離之比為1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1這兩種情況;(3)不能根據(jù)相似三角形對應邊成比例求出三角形的邊長.14、x<1【解析】

根據(jù)一次函數(shù)的性質得出不等式解答即可.【詳解】因為一次函數(shù)y=﹣2(x+1)+4的值是正數(shù),可得:﹣2(x+1)+4>0,解得:x<1,故答案為x<1.本題考查了一次函數(shù)與一元一次不等式,根據(jù)題意正確列出不等式是解題的關鍵.15、1.【解析】試題解析:在RtΔABC中,sin34°=∴AC=AB×sin34°=500×0.56=1米.故答案為1.16、455【解析】

根據(jù)二次根式的性質即可求出答案.【詳解】①原式=4;②原式==5;③原式==5,故答案為:①4;②5;③5本題考查二次根式的性質,解題的關鍵是熟練運用二次根式的性質,本題屬于基礎題型.17、10°【解析】

根據(jù)線段的垂直平分線得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度數(shù)即可得到答案.【詳解】∵點D、E分別是AB、AC邊的垂直平分線與BC的交點,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC-(∠BAD+∠CAE)=180°-85°-85°=10°,故答案為10°本題主要考查對等腰三角形的性質,三角形的內(nèi)角和定理,線段的垂直平分線的性質等知識點的理解和掌握,能綜合運用這些性質進行計算是解此題的關鍵.18、D【解析】D.試題分析:應用排他法分析求解:若微型記錄儀位于圖1中的點M,AM最小,與圖2不符,可排除A.若微型記錄儀位于圖1中的點N,由于AN=BM,即甲蟲從A到B時是對稱的,與圖2不符,可排除B.若微型記錄儀位于圖1中的點P,由于甲蟲從A到OP與圓弧的交點時甲蟲與微型記錄儀之間的距離y逐漸減?。患紫x從OP與圓弧的交點到A時甲蟲與微型記錄儀之間的距離y逐漸增大,即y與t的函數(shù)關系的圖象只有兩個趨勢,與圖2不符,可排除C.故選D.考點:1.動點問題的函數(shù)圖象分析;2.排他法的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)3【解析】

(1)連接OC,AC,可先證明AC平分∠BAE,結合圓的性質可證明OC∥AE,可得∠OCB=90°,可證得結論;(2)可先證得四邊形AOCD為平行四邊形,再證明△OCB為等邊三角形,可求得CF、AB,利用梯形的面積公式可求得答案.【詳解】(1)證明:連接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半徑,點C為半徑外端,∴CE是⊙O的切線.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四邊形AOCD是平行四邊形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等邊三角形,在Rt△CFB中,CF=CB∴S四邊形ABCD=12(DC+AB)?CF=本題主要考查切線的判定,掌握切線的兩種判定方法是解題的關鍵,即有切點時連接圓心和切點,然后證明垂直,沒有切點時,過圓心作垂直,證明圓心到直線的距離等于半徑.20、(1);(2);【解析】

(1)根據(jù)負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以解答本題.【詳解】解:(1)原式(2)原式本題考查分式的混合運算、實數(shù)的運算、負整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、零指數(shù)冪,解答本題的關鍵是明確它們各自的計算方法.21、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(6,﹣14)(4,﹣5);(3).【解析】

(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;

(2)根據(jù)垂線間的關系,可得PA,PB的解析式,根據(jù)解方程組,可得P點坐標;

(3)根據(jù)垂直于x的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得MQ,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質,可得面積的最大值,根據(jù)三角形的底一定時面積與高成正比,可得三角形高的最大值【詳解】解:(1)將A,B點坐標代入,得,解得,拋物線的解析式為y=;(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案為﹣;②AB的解析式為當PA⊥AB時,PA的解析式為y=﹣2x﹣2,聯(lián)立PA與拋物線,得,解得(舍),,即P(6,﹣14);當PB⊥AB時,PB的解析式為y=﹣2x+3,聯(lián)立PB與拋物線,得,解得(舍),即P(4,﹣5),綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(6,﹣14)(4,﹣5);(3)如圖:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,當t=0時,S取最大值,即M(0,1).由勾股定理,得AB==,設M到AB的距離為h,由三角形的面積,得h==.點M到直線AB的距離的最大值是.本題考查了二次函數(shù)綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關鍵22、(1)45°;(2)26°.【解析】

(1)根據(jù)圓周角和圓心角的關系和圖形可以求得∠ABC和∠ABD的大?。唬?)根據(jù)題意和平行線的性質、切線的性質可以求得∠OCD的大小.【詳解】(1)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.本題考查切線的性質、圓周角定理,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.23、(1)(2)作圖見解析;(3).【解析】

(1)利用平移的性質畫圖,即對應點都移動相同的距離.(2)利用旋轉的性質畫圖,對應點都旋轉相同的角度.(3)利用勾股定理和弧長公式求點B經(jīng)過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網(wǎng)格問題;2.作圖(平移和旋轉變換);3.勾股定理;4.弧長的計算.24、(1)60;(2)【解析】(1)由平行線的性質以及方向角的定義得出∠FBA=∠EAB=30°,∠FBC=75°,那么∠ABC=45°,又根據(jù)方向角的定義得出∠BAC=∠BAE+∠CAE=75°,利用三角形內(nèi)角和定理求出∠C=60°;(2)作AD⊥BC交BC于點D,解Rt△ABD,得出BD=AD=30,解Rt△ACD,得出CD=10,根據(jù)BC=BD+CD即可求解.解:(1)如圖所示,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABC=45°,∵∠BAC=∠BAE+∠CAE=75°,∴∠C=60°.故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論