人教七年級下冊數(shù)學期末解答題難題(附答案)_第1頁
人教七年級下冊數(shù)學期末解答題難題(附答案)_第2頁
人教七年級下冊數(shù)學期末解答題難題(附答案)_第3頁
人教七年級下冊數(shù)學期末解答題難題(附答案)_第4頁
人教七年級下冊數(shù)學期末解答題難題(附答案)_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

人教七年級下冊數(shù)學期末解答題難題(附答案)一、解答題1.喜歡探究的亮亮同學拿出形狀分別是長方形和正方形的兩塊紙片,其中長方形紙片的長為,寬為,且兩塊紙片面積相等.(1)亮亮想知道正方形紙片的邊長,請你幫他求出正方形紙片的邊長;(結(jié)果保留根號)(2)在長方形紙片上截出兩個完整的正方形紙片,面積分別為和,亮亮認為兩個正方形紙片的面積之和小于長方形紙片的總面積,所以一定能截出符合要求的正方形紙片來,你同意亮亮的見解嗎?為什么?(參考數(shù)據(jù):,)2.觀察下圖,每個小正方形的邊長均為1,(1)圖中陰影部分的面積是多少?邊長是多少?(2)估計邊長的值在哪兩個整數(shù)之間.3.小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請幫小麗設計一種可行的裁剪方案;(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請幫小麗設計一種裁剪方案,若不能,請簡要說明理由.4.張華想用一塊面積為400cm2的正方形紙片,沿著邊的方向剪出一塊面積為300cm2的長方形紙片,使它的長寬之比為3:2.他不知能否裁得出來,正在發(fā)愁.李明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意李明的說法嗎?張華能用這塊紙片裁出符合要求的紙片嗎?5.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長方形紙片,使它的長是寬的2倍.她不知能否裁得出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?你認為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?二、解答題6.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當點B在點A的左側(cè)時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數(shù).②如圖3,當點B在點A的右側(cè)時,設∠ABC=α,∠ADC=β,請你求出∠BFD的度數(shù).(用含有α,β的式子表示)7.如圖1,點在直線上,點在直線上,點在,之間,且滿足.(1)證明:;(2)如圖2,若,,點在線段上,連接,且,試判斷與的數(shù)量關系,并說明理由;(3)如圖3,若(為大于等于的整數(shù)),點在線段上,連接,若,則______.8.(1)(問題)如圖1,若,,.求的度數(shù);(2)(問題遷移)如圖2,,點在的上方,問,,之間有何數(shù)量關系?請說明理由;(3)(聯(lián)想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點,用含有的式子表示的度數(shù).9.閱讀下面材料:小亮同學遇到這樣一個問題:已知:如圖甲,ABCD,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D.(1)小亮寫出了該問題的證明,請你幫他把證明過程補充完整.證明:過點E作EFAB,則有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)請你參考小亮思考問題的方法,解決問題:如圖乙,已知:直線ab,點A,B在直線a上,點C,D在直線b上,連接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直線交于點E.①如圖1,當點B在點A的左側(cè)時,若∠ABC=60°,∠ADC=70°,求∠BED的度數(shù);②如圖2,當點B在點A的右側(cè)時,設∠ABC=α,∠ADC=β,請你求出∠BED的度數(shù)(用含有α,β的式子表示).10.已知,如圖:射線分別與直線、相交于、兩點,的角平分線與直線相交于點,射線交于點,設,且.(1)________,________;直線與的位置關系是______;(2)如圖,若點是射線上任意一點,且,試找出與之間存在一個什么確定的數(shù)量關系?并證明你的結(jié)論.(3)若將圖中的射線繞著端點逆時針方向旋轉(zhuǎn)(如圖)分別與、相交于點和點時,作的角平分線與射線相交于點,問在旋轉(zhuǎn)的過程中的值變不變?若不變,請求出其值;若變化,請說明理由.三、解答題11.已知:三角形ABC和三角形DEF位于直線MN的兩側(cè)中,直線MN經(jīng)過點C,且,其中,,,點E、F均落在直線MN上.(1)如圖1,當點C與點E重合時,求證:;聰明的小麗過點C作,并利用這條輔助線解決了問題.請你根據(jù)小麗的思考,寫出解決這一問題的過程.(2)將三角形DEF沿著NM的方向平移,如圖2,求證:;(3)將三角形DEF沿著NM的方向平移,使得點E移動到點,畫出平移后的三角形DEF,并回答問題,若,則________.(用含的代數(shù)式表示)12.課題學習:平行線的“等角轉(zhuǎn)化”功能.閱讀理解:如圖1,已知點A是BC外一點,連接AB,AC,求∠BAC+∠B+∠C的度數(shù).(1)閱讀并補充下面推理過程解:過點A作ED∥BC,∴∠B=∠EAB,∠C=又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解題反思:從上面推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將∠BAC,∠B,∠C“湊”在一起,得出角之間的關系,使問題得以解決.方法運用:(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).(提示:過點C作CF∥AB)深化拓展:(3)如圖3,已知AB∥CD,點C在點D的右側(cè),∠ADC=70°,點B在點A的左側(cè),∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點E,點E在AB與CD兩條平行線之間,求∠BED的度數(shù).13.已知兩條直線l1,l2,l1∥l2,點A,B在直線l1上,點A在點B的左邊,點C,D在直線l2上,且滿足.(1)如圖①,求證:AD∥BC;(2)點M,N在線段CD上,點M在點N的左邊且滿足,且AN平分∠CAD;(Ⅰ)如圖②,當時,求∠DAM的度數(shù);(Ⅱ)如圖③,當時,求∠ACD的度數(shù).14.已知直線,點分別為,上的點.(1)如圖1,若,,,求與的度數(shù);(2)如圖2,若,,,則_________;(3)若把(2)中“,,”改為“,,”,則_________.(用含的式子表示)15.綜合與探究綜合與實踐課上,同學們以“一個含角的直角三角尺和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.實踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結(jié)論的基礎上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關系,請寫出與的數(shù)量關系并說明理由.四、解答題16.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點同時從點O出發(fā),點A沿直線m向左運動,點B沿直線n向上運動.(1)若∠BAO和∠ABO的平分線相交于點Q,在點A,B的運動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補角的平分線,BP是∠ABO的鄰補角的平分線,AP、BP相交于點P,AQ的延長線交PB的延長線于點C,在點A,B的運動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數(shù);若發(fā)生變化,請說明理由.17.如圖,△ABC和△ADE有公共頂點A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,則∠EAC=;(2)如圖1,過AC上一點O作OG⊥AC,分別交AB、AD、AE于點G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求線段OF的長;②如圖2,∠AFO的平分線和∠AOF的平分線交于點M,∠FHD的平分線和∠OGB的平分線交于點N,∠N+∠M的度數(shù)是否發(fā)生變化?若不變,求出其度數(shù);若改變,請說明理由.18.互動學習課堂上某小組同學對一個課題展開了探究.小亮:已知,如圖三角形,點是三角形內(nèi)一點,連接,,試探究與,,之間的關系.小明:可以用三角形內(nèi)角和定理去解決.小麗:用外角的相關結(jié)論也能解決.(1)請你在橫線上補全小明的探究過程:∵,(______)∴,(等式性質(zhì))∵,∴,∴.(______)(2)請你按照小麗的思路完成探究過程;(3)利用探究的結(jié)果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點,,,則______;③如圖③,,的十等分線相交于點、、、…、,若,,則的度數(shù)為______;④如圖④,,的角平分線交于點,則,與之間的數(shù)量關系是______;⑤如圖⑤,,的角平分線交于點,,,求的度數(shù).19.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點落在內(nèi)的點處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數(shù)量關系,直接寫出結(jié)論.②當點落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關系?請說明.(3)應用:如圖③:把一個三角形的三個角向內(nèi)折疊之后,且三個頂點不重合,那么圖中的和是________.20.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點P.問∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關系?(特殊化)(1)當∠1=40°,交點P在直線a、直線b之間,求∠EPB的度數(shù);(2)當∠1=70°,求∠EPB的度數(shù);(一般化)(3)當∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).【參考答案】一、解答題1.(1);(2)不同意,理由見解析【分析】(1)設正方形邊長為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術(shù)平方根的意義即可求出x的值;(2)根據(jù)兩個正方形紙片的面積計算出兩個正方形的邊長,計算兩個解析:(1);(2)不同意,理由見解析【分析】(1)設正方形邊長為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術(shù)平方根的意義即可求出x的值;(2)根據(jù)兩個正方形紙片的面積計算出兩個正方形的邊長,計算兩個正方形邊長的和,并與3比較即可解答.【詳解】解:(1)設正方形邊長為,則,由算術(shù)平方根的意義可知,所以正方形的邊長是.(2)不同意.因為:兩個小正方形的面積分別為和,則它們的邊長分別為和.,即兩個正方形邊長的和約為,所以,即兩個正方形邊長的和大于長方形的長,所以不能在長方形紙片上截出兩個完整的面積分別為和的正方形紙片.【點睛】本題考查了算術(shù)平方根的應用,解題的關鍵是讀懂題意并熟知算術(shù)平方根的概念.2.(1)圖中陰影部分的面積17,邊長是;(2)邊長的值在4與5之間【分析】(1)由圖形可以得到陰影正方形的面積等于原來大正方形的面積減去周圍四個直角三角形的面積,由正方形的面積等于邊長乘以邊長,可解析:(1)圖中陰影部分的面積17,邊長是;(2)邊長的值在4與5之間【分析】(1)由圖形可以得到陰影正方形的面積等于原來大正方形的面積減去周圍四個直角三角形的面積,由正方形的面積等于邊長乘以邊長,可以得到陰影正方形的邊長;(2)根據(jù),可以估算出邊長的值在哪兩個整數(shù)之間.【詳解】(1)由圖可知,圖中陰影正方形的面積是:5×5?=17則陰影正方形的邊長為:答:圖中陰影部分的面積17,邊長是(2)∵所以4<<5∴邊長的值在4與5之間;【點睛】本題主要考查了無理數(shù)的估算及算術(shù)平方根的定義,解題主要利用了勾股定理和正方形的面積求解,有一定的綜合性,解題關鍵是無理數(shù)的估算.3.(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設面積為400cm2的正方形紙片的邊長為acm∴解析:(1)可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形;(2)不能,理由見解析.【解析】(1)解:設面積為400cm2的正方形紙片的邊長為acm∴a2=400又∵a>0∴a=20又∵要裁出的長方形面積為300cm2∴若以原正方形紙片的邊長為長方形的長,則長方形的寬為:300÷20=15(cm)∴可以以正方形一邊為長方形的長,在其鄰邊上截取長為15cm的線段作為寬即可裁出符合要求的長方形(2)∵長方形紙片的長寬之比為3:2∴設長方形紙片的長為3xcm,則寬為2xcm∴6x2=300∴x2=50又∵x>0∴x=∴長方形紙片的長為又∵>202即:>20∴小麗不能用這塊紙片裁出符合要求的紙片4.不同意,理由見解析.【詳解】試題分析:設面積為300平方厘米的長方形的長寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長為20厘米,由于解析:不同意,理由見解析.【詳解】試題分析:設面積為300平方厘米的長方形的長寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長為20厘米,由于>20,所以用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.試題解析:解:不同意李明的說法.設長方形紙片的長為3x(x>0)cm,則寬為2xcm,依題意得:3x?2x=300,6x2=300,x2=50,∵x>0,∴x==,∴長方形紙片的長為cm,∵50>49,∴>7,∴>21,即長方形紙片的長大于20cm,由正方形紙片的面積為400cm2,可知其邊長為20cm,∴長方形紙片的長大于正方形紙片的邊長.答:李明不能用這塊紙片裁出符合要求的長方形紙片.點睛:本題考查了算術(shù)平方根的定義:一個正數(shù)的正的平方根叫這個數(shù)的算術(shù)平方根;0的算術(shù)平方根為0.也考查了估算無理數(shù)的大?。?.不同意,理由見解析【分析】先求得正方形的邊長,然后設設長方形寬為,長為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長,從而可作出判斷.【詳解】解:不同意,因為正方形的面積為,解析:不同意,理由見解析【分析】先求得正方形的邊長,然后設設長方形寬為,長為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長,從而可作出判斷.【詳解】解:不同意,因為正方形的面積為,故邊長為設長方形寬為,則長為長方形面積∴,解得(負值舍去)長為即長方形的長大于正方形的邊長,所以不能裁出符合要求的長方形紙片【點睛】本題主要考查的是算術(shù)平方根的性質(zhì),熟練掌握算術(shù)平方根的性質(zhì)是解題的關鍵.二、解答題6.(1)見解析;(2)55°;(3)【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖2,過點作,當點在點的左側(cè)時,根據(jù),,根據(jù)平行線的性質(zhì)及角平分線的定義即可求的度數(shù);②如圖解析:(1)見解析;(2)55°;(3)【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖2,過點作,當點在點的左側(cè)時,根據(jù),,根據(jù)平行線的性質(zhì)及角平分線的定義即可求的度數(shù);②如圖3,過點作,當點在點的右側(cè)時,,,根據(jù)平行線的性質(zhì)及角平分線的定義即可求出的度數(shù).【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數(shù)為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數(shù)為.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關鍵是熟練掌握平行線的判定與性質(zhì).7.(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)解析:(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結(jié)論;(3)作CF∥ST,設∠CBT=β,得到∠CBT=∠BCF=β,分別表示出∠CAN和∠CAE,即可得到比值.【詳解】解:(1)如圖,連接,,,,,(2),理由:作,則如圖,設,則.,,,,.即.(3)作,則如圖,設,則.,,,,,故答案為.【點睛】本題主要考查平行線的性質(zhì)和判定,解題關鍵是角度的靈活轉(zhuǎn)換,構(gòu)建數(shù)量關系式.8.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進而可得∠PF解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據(jù)平行線的性質(zhì)與判定可求解;(2)過P點作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB與PF交點為O,連接EF,根據(jù)三角形的內(nèi)角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB與PF交點為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點睛】本題主要考查平行線的性質(zhì)與判定,靈活運用平行線的性質(zhì)與判定是解題的關鍵.9.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側(cè)時,根據(jù)∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖1,過點E作EF∥AB,當點B在點A的左側(cè)時,根據(jù)∠ABC=60°,∠ADC=70°,參考小亮思考問題的方法即可求∠BED的度數(shù);②如圖2,過點E作EF∥AB,當點B在點A的右側(cè)時,∠ABC=α,∠ADC=β,參考小亮思考問題的方法即可求出∠BED的度數(shù).【詳解】解:(1)過點E作EF∥AB,則有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案為:∠B;EF;CD;∠D;(2)①如圖1,過點E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度數(shù)為65°;②如圖2,過點E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣.答:∠BED的度數(shù)為180°﹣.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關鍵是熟練掌握平行線的判定與性質(zhì).10.(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計算α和β的值,再根據(jù)內(nèi)錯角相等可證AB∥CD;(2解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,證明見解析;(3)不變,2【分析】(1)根據(jù)(α-35)2+|β-α|=0,即可計算α和β的值,再根據(jù)內(nèi)錯角相等可證AB∥CD;(2)先根據(jù)內(nèi)錯角相等證GH∥PN,再根據(jù)同旁內(nèi)角互補和等量代換得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分線交M1Q的延長線于R,先根據(jù)同位角相等證ER∥FQ,得∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,得出∠EPM1=2∠R,即可得=2.【詳解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM=∠MFN=35°,∠EMF=35°,∴∠EMF=∠MFN,∴AB∥CD;(2)∠FMN+∠GHF=180°;理由:由(1)得AB∥CD,∴∠MNF=∠PME,∵∠MGH=∠MNF,∴∠PME=∠MGH,∴GH∥PN,∴∠GHM=∠FMN,∵∠GHF+∠GHM=180°,∴∠FMN+∠GHF=180°;(3)的值不變,為2,理由:如圖3中,作∠PEM1的平分線交M1Q的延長線于R,∵AB∥CD,∴∠PEM1=∠PFN,∵∠PER=∠PEM1,∠PFQ=∠PFN,∴∠PER=∠PFQ,∴ER∥FQ,∴∠FQM1=∠R,設∠PER=∠REB=x,∠PM1R=∠RM1B=y,則有:,可得∠EPM1=2∠R,∴∠EPM1=2∠FQM1,∴==2.【點睛】本題主要考查平行線的判定與性質(zhì),熟練掌握內(nèi)錯角相等證平行,平行線同旁內(nèi)角互補等知識是解題的關鍵.三、解答題11.(1)見解析;(2)見解析;(3)見解析;.【分析】(1)過點C作,得到,再根據(jù),,得到,進而得到,最后證明;(2)先證明,再證明,得到,問題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠D解析:(1)見解析;(2)見解析;(3)見解析;.【分析】(1)過點C作,得到,再根據(jù),,得到,進而得到,最后證明;(2)先證明,再證明,得到,問題得證;(3)根據(jù)題意得到,根據(jù)(2)結(jié)論得到∠DEF=∠ECA=,進而得到,根據(jù)三角形內(nèi)角和即可求解.【詳解】解:(1)過點C作,,,,,,,,,;(2)解:,,又,,,,,,;(3)如圖三角形DEF即為所求作三角形.∵,∴,由(2)得,DE∥AC,∴∠DEF=∠ECA=,∵,∴∠ACB=,∴,∴∠A=180°-=.故答案為為:.【點睛】本題考查了平行線的判定,三角形的內(nèi)角和等知識,綜合性較強,熟練掌握相關知識,根據(jù)題意畫出圖形是解題關鍵.12.(1)∠DAC;(2)360°;(3)65°【分析】(1)根據(jù)平行線的性質(zhì)即可得到結(jié)論;(2)過C作CF∥AB根據(jù)平行線的性質(zhì)得到∠D=∠FCD,∠B=∠BCF,然后根據(jù)已知條件即可得到結(jié)論;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根據(jù)平行線的性質(zhì)即可得到結(jié)論;(2)過C作CF∥AB根據(jù)平行線的性質(zhì)得到∠D=∠FCD,∠B=∠BCF,然后根據(jù)已知條件即可得到結(jié)論;(3)過點E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯角相等,即可求∠BED的度數(shù).【詳解】解:(1)過點A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案為:∠DAC;(2)過C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如圖3,過點E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【點睛】此題考查了平行線的判定與性質(zhì),解題的關鍵是正確添加輔助線,利用平行線的性質(zhì)進行推算.13.(1)證明見解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根據(jù)平行線的性質(zhì)可得,再根據(jù)角的和差可得,然后根據(jù)平行線的判定即可得證;(2)(Ⅰ)先根據(jù)平行線的性質(zhì)可得,從而可得,再根據(jù)角的和差可得解析:(1)證明見解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根據(jù)平行線的性質(zhì)可得,再根據(jù)角的和差可得,然后根據(jù)平行線的判定即可得證;(2)(Ⅰ)先根據(jù)平行線的性質(zhì)可得,從而可得,再根據(jù)角的和差可得,然后根據(jù)即可得;(Ⅱ)設,從而可得,先根據(jù)角平分線的定義可得,再根據(jù)角的和差可得,然后根據(jù)建立方程可求出x的值,從而可得的度數(shù),最后根據(jù)平行線的性質(zhì)即可得.【詳解】(1),,又,,;(2)(Ⅰ),,,,由(1)已得:,,;(Ⅱ)設,則,平分,,,,,由(1)已得:,,即,解得,,又,.【點睛】本題考查了平行線的判定與性質(zhì)、角的和差、角平分線的定義、一元一次方程的幾何應用等知識點,熟練掌握平行線的判定與性質(zhì)是解題關鍵.14.(1)120o,120o;(2)160;(3)【分析】(1)過點作,,根據(jù),平行線的性質(zhì)和周角可求出,則,再根據(jù),,可得,,可求出,,根據(jù)即可得到結(jié)果;(2)同理(1)的求法,解析:(1)120o,120o;(2)160;(3)【分析】(1)過點作,,根據(jù),平行線的性質(zhì)和周角可求出,則,再根據(jù),,可得,,可求出,,根據(jù)即可得到結(jié)果;(2)同理(1)的求法,根據(jù),,求解即可;(3)同理(1)的求法,根據(jù),,求解即可;【詳解】解:(1)如圖示,分別過點作,,∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.(2)如圖示,分別過點作,,∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.故答案為:160;(3)同理(1)的求法∵,∴,∴,∴,∴,∵,∴,又∵,∴,,∴.故答案為:.【點睛】本題主要考查了平行線的性質(zhì)和角度的運算,熟悉相關性質(zhì)是解題的關鍵.15.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進而得出結(jié)論;(3)過點C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過點作,圖2,,,,,,;(3),圖3理由如下:如圖3,過點作,平分,,,又,,,,,又,,.【點睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關鍵.四、解答題16.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內(nèi)角各定理可求∠AQB的大?。?2)題求∠P的大小,用鄰補角、角平分線、平角、直角和三角形內(nèi)角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠PBA=∠ABF,∴∠PAB+∠PBA=(∠EAB+∠ABF)=×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不變,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【點睛】本題考查三角形內(nèi)角和定理,垂直,角平分線,平角,直角和角的和差等知識點,同時,也是一個以靜求動的一個點型題目,有益于培養(yǎng)學生的思維幾何綜合題.17.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行線的性質(zhì)求解即可.(2)①利用三角形的面積求出GH,HF,再證明AO=OG=2,可得結(jié)論.②利用角平分線的定義求出∠M,∠N(用∠FAO表示),可得結(jié)論.【詳解】解:(1)如圖,∵AB∥ED∴∠E=∠EAB=90°(兩直線平行,內(nèi)錯角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案為:45°.(2)①如圖1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=?GH?AO=4,S△AHF=?FH?AO=1,∴GH=4,F(xiàn)H=1,∴OF=GH-HF-OG=4-1-2=1.②結(jié)論:∠N+∠M=142.5°,度數(shù)不變.理由:如圖2中,∵MF,MO分別平分∠AFO,∠AOF,∴∠M=180°-(∠AFO+∠AOF)=180°-(180°-∠FAO)=90°+∠FAO,∵NH,NG分別平分∠DHG,∠BGH,∴∠N=180°-(∠DHG+∠BGH)=180°-(∠HAG+∠AGH+∠HAG+∠AHG)=180°-(180°+∠HAG)=90°-∠HAG=90°-(30°+∠FAO+45°)=52.5°-∠FAO,∴∠M+∠N=142.5°.【點睛】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,三角形外角的性質(zhì)等知識,最后一個問題的解題關鍵是用∠FAO表示出∠M,∠N.18.(1)三角形內(nèi)角和180°;等量代換;(2)見解析;(3)①;②;③;④;⑤【分析】(1)根據(jù)三角形的內(nèi)角和定理即可判斷,根據(jù)等量代換的概念即可判斷;(2)想要利用外角的性質(zhì)求解,就需要構(gòu)造外解析:(1)三角形內(nèi)角和180°;等量代換;(2)見解析;(3)①;②;③;④;⑤【分析】(1)根據(jù)三角形的內(nèi)角和定理即可判斷,根據(jù)等量代換的概念即可判斷;(2)想要利用外角的性質(zhì)求解,就需要構(gòu)造外角,因此延長交于,然后根據(jù)外角的性質(zhì)確定,,即可判斷與,,之間的關系;(3)①連接BC,然后根據(jù)(1)中結(jié)論,代入已知條件即可求解;②連接BC,然后根據(jù)(1)中結(jié)論,求得的和,進而得到的和,然后根據(jù)角平分線求得的和,進而求得,然后利用三角形內(nèi)角和定理,即可求解;③連接BC,首先求得,然后根據(jù)十等分線和三角形內(nèi)角和的性質(zhì)得到,然后得到的和,最后根據(jù)(1)中結(jié)論即可求解;④設與的交點為點,首先利用根據(jù)外角的性質(zhì)將用兩種形式表示出來,然后得到,然后根據(jù)角平分線的性質(zhì),移項整理即可判斷;⑤根據(jù)(1)問結(jié)論,得到的和,然后根據(jù)角平分線的性質(zhì)得到的和,然后利用三角形內(nèi)角和性質(zhì)即可求解.【詳解】(1)∵,(三角形內(nèi)角和180°)∴,(等式性質(zhì))∵,∴,∴.(等量代換)故答案為:三角形內(nèi)角和180°;等量代換.(2)如圖,延長交于,由三角形外角性質(zhì)可知,,,∴.(3)①如圖①所示,連接BC,,根據(jù)(1)中結(jié)論,得,∴,∴;②如圖②所示,連接BC,,根據(jù)(1)中結(jié)論,得,∴,∵與的角平分線交于點,∴,,∴,∵,,∴,∴,∵,∴;③如圖③所示,連接BC,,根據(jù)(1)中結(jié)論,得,∵,,∴,∵與的十等分線交于點,∴,,∴,∴,∵,∴,∴,∴,∴;④如圖④所示,設與的交點為點,∵平分,平分,∴,,∵,,∴,∴,∴,即;⑤∵,的角平分線交于點,∴,∴.【點睛】本題考查了三角形內(nèi)角和定量,外角的性質(zhì),以及輔助線的做法,重點是觀察題干中的解題思路,然后注意角平分線的性質(zhì),逐漸推到即可求解.19.(1)50°;(2)①見解析;②見解析;(3)360°.【分析】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論