重難點(diǎn)解析四川榮縣中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測試試題(含詳細(xì)解析)_第1頁
重難點(diǎn)解析四川榮縣中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測試試題(含詳細(xì)解析)_第2頁
重難點(diǎn)解析四川榮縣中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測試試題(含詳細(xì)解析)_第3頁
重難點(diǎn)解析四川榮縣中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測試試題(含詳細(xì)解析)_第4頁
重難點(diǎn)解析四川榮縣中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測試試題(含詳細(xì)解析)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川榮縣中學(xué)7年級(jí)數(shù)學(xué)下冊(cè)第四章三角形達(dá)標(biāo)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計(jì)20分)1、如圖,已知,要使,添加的條件不正確的是()A. B. C. D.2、定理:三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測量所得)又∵133°=70°+63°(計(jì)算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內(nèi)角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質(zhì)).下列說法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測量夠100個(gè)三角形進(jìn)行驗(yàn)證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理3、如圖,點(diǎn)O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,則OC的長為()A.3 B.4 C.5 D.64、若三條線段中a=3,b=5,c為奇數(shù),那么以a、b、c為邊組成的三角形共有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、以長為15cm,12cm,8cm、5cm的四條線段中的三條線段為邊,可以畫出三角形的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6、下列敘述正確的是()A.三角形的外角大于它的內(nèi)角 B.三角形的外角都比銳角大C.三角形的內(nèi)角沒有小于60°的 D.三角形中可以有三個(gè)內(nèi)角都是銳角7、如圖,為了估算河的寬度,我們可以在河的對(duì)岸選定一個(gè)目標(biāo)點(diǎn),再在河的這一邊選定點(diǎn)和,使,并在垂線上取兩點(diǎn)、,使,再作出的垂線,使點(diǎn)、、在同一條直線上,因此證得,進(jìn)而可得,即測得的長就是的長,則的理論依據(jù)是()A. B. C. D.8、如果一個(gè)三角形的兩邊長分別為5cm和8cm,則第三邊長可能是()A.2cm B.3cm C.12cm D.13cm9、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,1310、有一個(gè)三角形的兩邊長分別為2和5,則第三邊的長可能是()A.2 B.2.5 C.3 D.5第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計(jì)20分)1、如圖,在長方形ABCD中,,.延長BC到點(diǎn)E,使,連結(jié)DE,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度沿向終點(diǎn)A運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t的值為______________時(shí),和全等.2、在平面直角坐標(biāo)系中,點(diǎn)B(0,4),點(diǎn)A為x軸上一動(dòng)點(diǎn),連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時(shí)針方向排列,且∠BAE為直角),連接OE.當(dāng)OE最小時(shí),點(diǎn)E的縱坐標(biāo)為______.3、如圖,在中,已知點(diǎn),,分別為,,的中點(diǎn),且,則陰影部分的面積______.4、如圖,點(diǎn)C是線段AB的中點(diǎn),.請(qǐng)你只添加一個(gè)條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個(gè)答案即可)(2)依據(jù)所添?xiàng)l件,判定與全等的理由是______.5、如圖,已知△ABC≌△DEF,∠B=30°,∠F=40°,則∠A的度數(shù)是______.6、如圖,AE是△ABC的中線,BF是△ABE的中線,若△ABC的面積是20cm2,則S△ABF=_____cm2.7、如圖,在Rt△ABC中,CD是斜邊AB上的中線,若AB=10,則CD=_______.8、如圖,AB=CD,若要判定△ABD≌△CDB,則需要添加的一個(gè)條件是____________.9、兩角和它們的夾邊分別相等的兩個(gè)三角形全等(可以簡寫成_____).10、如圖,在△中,已知點(diǎn)分別為的中點(diǎn),若△的面積為,則陰影部分的面積為_________三、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,已知點(diǎn)A,C,D在同一直線上,BC與AF交于點(diǎn)E,AF=AC,AB=DF,AD=BC.(1)求證:∠ACE=∠EAC;(2)若∠B=50°,∠F=110°,求∠BCD的度數(shù).2、如圖,在和中,,,,.連接,交于點(diǎn),連接.(Ⅰ)求證:;(Ⅱ)求的大??;(Ⅲ)求證:3、將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖1方式疊放在一起,其中,.(1)若,則的度數(shù)為_______;(2)直接寫出與的數(shù)量關(guān)系:_________;(3)直接寫出與的數(shù)量關(guān)系:__________;(4)如圖2,當(dāng)且點(diǎn)E在直線的上方時(shí),將三角尺固定不動(dòng),改變?nèi)浅叩奈恢?,但始終保持兩個(gè)三角尺的頂點(diǎn)C重合,這兩塊三角尺是否存在一組邊互相平行?請(qǐng)直接寫出角度所有可能的值___________.4、如圖,點(diǎn)D在AC上,BC,DE交于點(diǎn)F,,,.(1)求證:;(2)若,求∠CDE的度數(shù).5、如圖,AD,BC相交于點(diǎn)O,AO=DO.(1)如果只添加一個(gè)條件,使得△AOB≌△DOC,那么你添加的條件是(要求:不再添加輔助線,只需填一個(gè)答案即可);(2)根據(jù)已知及(1)中添加的一個(gè)條件,證明AB=DC.6、在四邊形ABCD中,,點(diǎn)E在直線AB上,且.(1)如圖1,若,,,求AB的長;(2)如圖2,若DE交BC于點(diǎn)F,,求證:.-參考答案-一、單選題1、D【分析】已知條件AB=AC,還有公共角∠A,然后再結(jié)合選項(xiàng)所給條件和全等三角形的判定定理進(jìn)行分析即可.【詳解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此選項(xiàng)不合題意;D、添加BE=CD不能判定△ABE≌△ACD,故此選項(xiàng)符合題意;故選:D.【點(diǎn)睛】本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解題關(guān)鍵.2、D【分析】利用測量的方法只能是驗(yàn)證,用定理,定義,性質(zhì)結(jié)合嚴(yán)密的邏輯推理推導(dǎo)新的結(jié)論才是證明,再逐一分析各選項(xiàng)即可得到答案.【詳解】解:證法一只是利用特殊值驗(yàn)證三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,證法2才是用嚴(yán)謹(jǐn)?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測量夠100個(gè)三角形進(jìn)行驗(yàn)證,也只是驗(yàn)證,不能證明該定理,故B不符合題意;故選D【點(diǎn)睛】本題考查的是三角形的外角的性質(zhì)的驗(yàn)證與證明,理解驗(yàn)證與證明的含義及證明的方法是解本題的關(guān)鍵.3、C【分析】證明△AOB≌△COD推出OB=OD,OA=OC,即可解決問題.【詳解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故選C.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.4、C【分析】根據(jù)三角形的三邊關(guān)系,得到合題意的邊,進(jìn)而求得三角形的個(gè)數(shù).【詳解】解:c的范圍是:5﹣3<c<5+3,即2<c<8.∵c是奇數(shù),∴c=3或5或7,有3個(gè)值.則對(duì)應(yīng)的三角形有3個(gè).故選:C.【點(diǎn)睛】本題主要考查了三角形三邊關(guān)系,準(zhǔn)確分析判斷是解題的關(guān)鍵.5、C【分析】從4條線段里任取3條線段組合,可有4種情況,看哪種情況不符合三角形三邊關(guān)系,舍去即可.【詳解】解:首先可以組合為15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根據(jù)三角形的三邊關(guān)系,發(fā)現(xiàn)其中的12cm,8cm、5cm不符合,則可以畫出的三角形有3個(gè).故選:C.【點(diǎn)睛】本題考查了三角形的三邊關(guān)系:即任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.這里一定要首先把所有的情況組合后,再看是否符合三角形的三邊關(guān)系.6、D【分析】結(jié)合直角三角形,鈍角三角形,銳角三角形的內(nèi)角與外角的含義與大小逐一分析即可.【詳解】解:三角形的外角不一定大于它的內(nèi)角,銳角三角形的任何一個(gè)外角都大于內(nèi)角,故A不符合題意;三角形的外角可以是銳角,不一定比銳角大,故B不符合題意;三角形的內(nèi)角可以小于60°,一個(gè)三角形的三個(gè)角可以為:故C不符合題意;三角形中可以有三個(gè)內(nèi)角都是銳角,這是個(gè)銳角三角形,故D符合題意;故選D【點(diǎn)睛】本題考查的是三角形的的內(nèi)角與外角的含義與大小,掌握“直角三角形,鈍角三角形,銳角三角形的內(nèi)角與外角”是解本題的關(guān)鍵.7、C【分析】根據(jù)題意及全等三角形的判定定理可直接進(jìn)行求解.【詳解】解:∵,,∴,在和中,,∴(ASA),∴;故選C.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,熟練掌握全等三角形的性質(zhì)與判定是解題的關(guān)鍵.8、C【分析】根據(jù)兩邊之和大于第三邊,兩邊之差小于第三邊可求得結(jié)果【詳解】解:設(shè)第三邊長為c,由題可知,即,所以第三邊可能的結(jié)果為12cm故選C【點(diǎn)睛】本題主要考查了三角形的性質(zhì)中三角形的三邊關(guān)系知識(shí)點(diǎn)9、D【分析】根據(jù)三角形三邊關(guān)系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點(diǎn)睛】本題考查了構(gòu)成三角形的條件,熟練掌握三角形三邊關(guān)系是解題的關(guān)鍵.10、D【分析】根據(jù)三角形三邊關(guān)系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷.【詳解】解:設(shè)第三邊為x,則5?2<x<5+2,即3<x<7,所以選項(xiàng)D符合題意.故選:D.【點(diǎn)睛】本題考查三角形三邊關(guān)系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎(chǔ)題,中考??碱}型.二、填空題1、1或7【分析】分兩種情況進(jìn)行討論,根據(jù)題意得出BP=2t=2或AP=16-2t=2即可求得結(jié)果.【詳解】解:當(dāng)點(diǎn)P在BC上時(shí),∵AB=CD,∴當(dāng)△ABP≌△DCE,得到BP=CE,由題意得:BP=2t=2,∴t=1,當(dāng)P在AD上時(shí),∵AB=CD,∴當(dāng)△BAP≌△DCE,得到AP=CE,由題意得:AP=6+6-4﹣2t=2,解得t=7.∴當(dāng)t的值為1或7秒時(shí).△ABP和△DCE全等.故答案為:1或7.【點(diǎn)睛】本題考查了全等三角形的判定,解題的關(guān)鍵在于能夠利用分類討論的思想進(jìn)行求解.2、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設(shè)A(a,0),可求得E(a+4,a),點(diǎn)E在直線y=x-4上,當(dāng)OE⊥CD時(shí),OE最小,據(jù)此求出坐標(biāo)即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點(diǎn)C(4,0),點(diǎn)D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點(diǎn)E在直線CD上,當(dāng)OE⊥CD時(shí),OE最小,此時(shí)△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時(shí)點(diǎn)E的坐標(biāo)為:(2,-2).故答案為:-2【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是確定點(diǎn)E運(yùn)動(dòng)的軌跡,確定點(diǎn)E的位置.3、【分析】根據(jù)三角形中線性質(zhì),平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點(diǎn),,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點(diǎn),故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點(diǎn)撥】本題考查了三角形中線的性質(zhì),牢固掌握并會(huì)運(yùn)用是解題關(guān)鍵.4、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個(gè)三角形有一組對(duì)應(yīng)邊相等,一組對(duì)應(yīng)角相等,根據(jù)三角形全等的判定方法添加條件即可;(2)根據(jù)添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點(diǎn)C是線段AB的中點(diǎn),∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點(diǎn)睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關(guān)鍵.5、110°【分析】先根據(jù)全等三角形的性質(zhì)得到∠C=∠F=40°,然后根據(jù)三角形內(nèi)角和求∠F的度數(shù).【詳解】解:∵△ABC≌△DEF,∴∠C=∠F=40°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣30°=110°.故答案為:110°.【點(diǎn)睛】本題考查了全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等;全等三角形的對(duì)應(yīng)角相等.6、5【分析】利用三角形的中線把三角形分成面積相等的兩個(gè)三角形進(jìn)行解答.【詳解】解:∵AE是△ABC的中線,BF是△ABE的中線,∴S△ABF=S△ABC=×20=5cm2.故答案為:5.【點(diǎn)睛】本題考查了三角形的面積,能夠利用三角形的中線把三角形分成面積相等的兩個(gè)三角形的性質(zhì)求解是解題的關(guān)鍵.7、5【分析】作交CD的延長線于E點(diǎn),首先根據(jù)ASA證明,得到,,然后根據(jù)證明,得到,即可求出CD的長度.【詳解】解:如圖所示,作交CD的延長線于E點(diǎn),∵,∴,∵CD是斜邊AB上的中線,∴,∴在和中,∴,∴,,∵,,∴,∴在和中,∴,∴,∴.故答案為:5.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),全等三角形的性質(zhì)和判定,作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.8、∠1=∠2(或填A(yù)D=CB)【分析】根據(jù)題意知,在△ABD與△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【詳解】解:∵在△ABD與△CDB中,AB=CD,BD=DB,∴添加∠1=∠2時(shí),可以根據(jù)SAS判定△ABD≌△CDB,添加AD=CB時(shí),可以根據(jù)SSS判定△ABD≌△CDB,,故答案為∠1=∠2(或填A(yù)D=CB).【點(diǎn)睛】本題考查了全等三角形的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.9、角邊角或【分析】根據(jù)全等三角形的判定定理得出即可.【詳解】解答:解:兩角和它們的夾邊分別相等的兩個(gè)三角形全等,簡寫成角邊角或ASA,故答案為:角邊角或ASA.【點(diǎn)睛】本題考查了全等三角形的判定定理,掌握全等三角形的判定定理是解題的關(guān)鍵.10、1【分析】根據(jù)三角形的中線把三角形分成兩個(gè)面積相等的三角形解答.【詳解】解:∵點(diǎn)E是AD的中點(diǎn),∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×4=2cm2,∴S△BCE=S△ABC=×4=2cm2,∵點(diǎn)F是CE的中點(diǎn),∴S△BEF=S△BCE=×2=1cm2.故答案為:1.【點(diǎn)睛】本題考查了三角形的面積,主要利用了三角形的中線把三角形分成兩個(gè)面積相等的三角形,原理為等底等高的三角形的面積相等.三、解答題1、(1)見解析;(2)160°【分析】(1)根據(jù)SSS定理判定△ABC≌△FDA即可得出結(jié)論.(2)由△ABC≌△FDA可知∠BAC=∠F=110°,再根據(jù)∠BCD是△ABC的外角得到∠BCD=∠B+∠BAC即可求出答案.【詳解】(1)證明:在△ABC和△FDA中,,∴△ABC≌△FDA(SSS),∴∠ACB=∠FAC即∠ACE=∠EAC.(2)解∵△ABC≌△FDA,∠F=110°,∴∠BAC=∠F=110°,又∵∠BCD是△ABC的外角,∠B=50°,∴∠BCD=∠B+∠BAC=160°.【點(diǎn)評(píng)】本題考查了全等三角形的判定和性質(zhì),熟練掌握三角形全等的判定定理是解決問題的關(guān)鍵.2、(Ⅰ)見解析;(Ⅱ);(Ⅲ)見解析【分析】(I)先證明△AOC≌△BOD(SAS),即可證明AC=BD;(II)如圖由于△AOC≌△BOD,所以∠OAC=∠OBD,再根據(jù)三角形外角等于與它不相鄰的兩個(gè)內(nèi)角之和得出∠AOB=∠AMB=36°(III)如圖,作兩條垂線,再通過面積相等證明兩條高也就是垂線相等,從而證明OM在∠AMD角平分線上,所以∠OMP=∠OMQ【詳解】解:(Ⅰ)∵,∴,即.∵,,∴≌.∴.(Ⅱ)如圖,由(Ⅰ)可得.∵,∴.∴.(Ⅲ)如圖,過分別作,,垂足分別為點(diǎn),.∵≌,∴.∴.∵,∴.∴點(diǎn)在的平分線上.∴.【點(diǎn)睛】本題考查全等三角形判定及其性質(zhì),三角形外角定理、角平分線的性質(zhì)與判定,掌握這些是本題解題關(guān)鍵,同時(shí)也要會(huì)添加輔助線.3、(1);(2);(3);(4)存在一組邊互相平行;或或或或.【分析】(1)根據(jù)垂直的性質(zhì)結(jié)合圖形求解即可;(2)根據(jù)垂直的性質(zhì)及各角之間的關(guān)系即可得出;(3)由(2)可得,根據(jù)圖中角度關(guān)系可得,將其代入即可得;(4)根據(jù)題意,分五種情況進(jìn)行分類討論:①當(dāng)時(shí);②當(dāng)時(shí);③當(dāng)時(shí);④當(dāng)時(shí);⑤當(dāng)時(shí);分別利用平行線的性質(zhì)進(jìn)行求解即可得.【詳解】解:(1)∵,∴,∵,∴,故答案為:;(2)∵,,∴,,即,,∴,故答案為:;(3)由(2)得:,∴,由圖可知:,∴,故答案為:;(4)①如圖所示:當(dāng)時(shí),,由(2)可知:;②如圖所示:當(dāng)時(shí),;③如圖所示:當(dāng)時(shí),,∴;④如圖所示:當(dāng)時(shí),,∴;⑤如圖所示:當(dāng)時(shí),延長AC交BE于點(diǎn)F,∴,∵,∴,∴;綜合可得:的度數(shù)為:或或或或,故答案為:或或或或.【點(diǎn)睛】題目主要考查垂直的性質(zhì)、各角之間的計(jì)算、平行線的性質(zhì)等,熟練掌握平行線的性質(zhì)進(jìn)行分類討論是解題關(guān)鍵.4、(1)證明見解析;(2)∠CDE=20°.【分析】(1)由“SAS”可證△ABC≌△DBE;(2)由全等三角形的性質(zhì)可得∠C=∠E,由三角形的外角性質(zhì)可求解.(1)證明:∵∠ABD=∠CBE,∴∠ABD+∠DBC=∠CBE+∠DBC,即:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論