綜合解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題攻克練習(xí)題(含答案解析)_第1頁
綜合解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題攻克練習(xí)題(含答案解析)_第2頁
綜合解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題攻克練習(xí)題(含答案解析)_第3頁
綜合解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題攻克練習(xí)題(含答案解析)_第4頁
綜合解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題攻克練習(xí)題(含答案解析)_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》專題攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(diǎn)(點(diǎn)D與A,B不重合),連結(jié)CD,將線段CD繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點(diǎn)F,連接BE.當(dāng)AD=BF時(shí),∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°2、有一個(gè)小口瓶(如圖所示),想知道它的內(nèi)徑是多少,但是尺子不能伸到里邊直接測,于是拿兩根長度相同的細(xì)木條,把兩根細(xì)木條的中點(diǎn)固定在一起,木條可以繞中點(diǎn)轉(zhuǎn)動(dòng),這樣只要量出AB的長,就可以知道玻璃瓶的內(nèi)徑是多少,那么△OAB≌△OCD理由是(

)A.邊角邊 B.角邊角 C.邊邊邊 D.角角邊3、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M,連接OM,下列結(jié)論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個(gè)數(shù)為()A.4 B.3 C.2 D.14、如圖:,,則此題可利用下列哪種方法來判定(

)A.ASA B.AAS C.HL D.缺少條件,不可判定5、如圖,已知,,,則的長為(

)A.7 B.3.5 C.3 D.2第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖所示,中,.直線l經(jīng)過點(diǎn)A,過點(diǎn)B作于點(diǎn)E,過點(diǎn)C作于點(diǎn)F.若,則__________.2、如圖,已知,,,則等于________.3、如圖,圖形的各個(gè)頂點(diǎn)都在33正方形網(wǎng)格的格點(diǎn)上.則______.4、如圖,在△ABC中,已知AD是△ABC的角平分線,作DE⊥AB,已知AB=4,AC=2,△ABD的面積是2,則△ADC的面積為___.5、如圖,已知,,添加一個(gè)條件,使,你添加的條件是______(填一個(gè)即可).三、解答題(5小題,每小題10分,共計(jì)50分)1、【閱讀理解】課外興趣小組活動(dòng)時(shí),老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點(diǎn)E,使DE=AD,連結(jié)BE.請(qǐng)根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(

).A.SSS

B.SAS

C.AAS

D.ASA(2)AD的取值范圍是(

).A.

B.

C.

D.(3)【感悟】解題時(shí),條件中若出現(xiàn)“中點(diǎn)”、“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個(gè)三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點(diǎn)E,交AD于F,且AE=EF.求證:AC=BF.2、△ABC、△DPC都是等邊三角形.(1)如圖1,求證:AP=BD;(2)如圖2,點(diǎn)P在△ABC內(nèi),M為AC的中點(diǎn),連PM、PA、PB,若PA⊥PM,且PB=2PM.①求證:BP⊥BD;②判斷PC與PA的數(shù)量關(guān)系并證明.3、已知如圖,E.F在BD上,且AB=CD,BF=DE,AE=CF,求證:AC與BD互相平分.4、如圖,是邊長為1的等邊三角形,,,點(diǎn),分別在,上,且,求的周長.5、已知△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,點(diǎn)D在直線BC上.(1)如圖1,當(dāng)點(diǎn)D在CB延長線上時(shí),求證:BE⊥CD;(2)如圖2,當(dāng)D點(diǎn)不在直線BC上時(shí),BE、CD相交于M,①直接寫出∠CME的度數(shù);②求證:MA平分∠CME-參考答案-一、單選題1、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計(jì)算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準(zhǔn)確判定三角形全等,從而利用全等三角形性質(zhì)解決相應(yīng)的問題.2、A【解析】【詳解】解:∵根據(jù)SAS得:△OAB≌△ODC.故選A.3、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據(jù)三角形全等的性質(zhì)及角平分線的判定定理可進(jìn)行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點(diǎn)O作OE⊥AC于點(diǎn)E,OF⊥BD于點(diǎn)F,BD與OA相交于點(diǎn)H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個(gè)數(shù)有4個(gè);故選A.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定及角平分線的判定定理,熟練掌握全等三角形的性質(zhì)與判定及角平分線的判定定理是解題的關(guān)鍵.4、C【解析】【分析】根據(jù)全等三角形的判定定理直接求解.【詳解】解:在Rt△ABC和Rt△DCB中,∴(HL),故選C.【考點(diǎn)】本題考查了全等三角形的判定定理,牢記全等三角形的判定定理是解題的關(guān)鍵.5、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對(duì)應(yīng)邊相等是解題的關(guān)鍵.二、填空題1、7【解析】【分析】根據(jù)全等三角形來實(shí)現(xiàn)相等線段之間的關(guān)系,從而進(jìn)行計(jì)算,即可得到答案;【詳解】解:∵BE⊥l,CF⊥l,∴∠AEB=∠CFA=90°.∴∠EAB+∠EBA=90°.又∵∠BAC=90°,∴∠EAB+∠CAF=90°.∴∠EBA=∠CAF.在△AEB和△CFA中∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,∴△AEB≌△CFA.∴AE=CF,BE=AF.∴AE+AF=BE+CF.∴EF=BE+CF.∵,∴;故答案為:7.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),余角的性質(zhì),解題的關(guān)鍵是熟練掌握所學(xué)的知識(shí),正確的證明三角形全等.2、【解析】【分析】根據(jù)提示可找到一組公共邊OP,從而根據(jù)SSS判定△POB≌△POA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】在和中,∵,,,,故答案為40°.【考點(diǎn)】本題考查了全等三角形的判定及性質(zhì),熟練掌握基本的性質(zhì)和判定是正確解題的關(guān)鍵.3、45°或45度【解析】【分析】通過證明三角形全等得出∠1=∠3,再根據(jù)∠1+∠2=∠3+∠2即可得出答案.【詳解】解:如圖所示,由題意得,在Rt△ABC和Rt△EFC中,∵∴Rt△ABC≌Rt△EFC(SAS)∴∠3=∠1∵∠2+∠3=90°∴∠1+∠2=∠3+∠2=90°故答案為:45°【考點(diǎn)】本題主要考查了全等三角形的判定和性質(zhì),由證明三角形全等得出∠1=∠3是解題的關(guān)鍵.4、1【解析】【分析】先根據(jù)三角形面積公式計(jì)算出DE=

1,再根據(jù)角平分線的性質(zhì)得到點(diǎn)D到AB和AC的距離相等,然后利用三角形的面積公式計(jì)算△ADC的面積.【詳解】DE⊥AB,S△ABD

DE

×

AB

=

2,

DE==1,AD是△ABC的角平分線,點(diǎn)D到AB和AC的距離相等,點(diǎn)D到AC的距離為1,S△ADC

=×2×1=

1.故答案為:1.【考點(diǎn)】本題考查了角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等,屬于基礎(chǔ)題,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.5、(答案不唯一)【解析】【分析】此題是一道開放型的題目,答案不唯一,先根據(jù)∠BCE=∠ACD求出∠BCA=∠DCE,再根據(jù)全等三角形的判定定理SAS推出即可.【詳解】解:添加的條件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案為:CB=CE(答案不唯一).【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL等.三、解答題1、(1)B(2)C(3)見解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=6,AE=2AD,由三角形三邊關(guān)系定理得出8-6<2AD<8+6,求出即可;(3)延長AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故選B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三邊關(guān)系定理得:8-6<2AD<8+6,∴1<AD<7,故選:C.(3)延長AD到點(diǎn)M,使AD=DM,連接BM.∵AD是△ABC中線∴CD=BD∵在△ADC和△MDB中∴∴BM=AC(全等三角形的對(duì)應(yīng)邊相等)∠CAD=∠M(全等三角形的對(duì)應(yīng)角相等)∵AE=EF,∴∠CAD=∠AFE(等邊對(duì)等角)∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM(等角對(duì)等邊)又∵BM=AC,∴AC=BF.【考點(diǎn)】本題考查了三角形的中線,三角形的三邊關(guān)系定理,等腰三角形性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn),主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力.2、(1)證明過程見解析;(2)①證明過程見解析;②PC=2PA,理由見解析.【解析】【分析】(1)證明△BCD≌△ACP(SAS),可得結(jié)論;(2)①如圖2中,延長PM到K,使得MK=PM,連接CK.證明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再證明△PDB≌△PCK(SSS),可得結(jié)論;②結(jié)論:PC=2PA.想辦法證明∠DPB=30°,可得結(jié)論.(1)證明:如圖1中,∵△ABC,△CDP都是等邊三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP;(2)證明:如圖2中,延長PM到K,使得MK=PM,連接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可證△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:結(jié)論:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,設(shè)∠DPB=∠CPK=x,則∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA.【考點(diǎn)】本題屬于三角形綜合題,考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),直角三角形30°角的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,關(guān)注全等三角形解決問題.3、見解析【解析】【分析】根據(jù)已知條件易證△ABE≌△DFC,由全等三角形的對(duì)應(yīng)角相等可得∠B=∠D,再利用AAS證明△ABO≌△COD,所以AO=CO,BO=DO,即可證明AC與BD互相平分.【詳解】證明:∵BF=DE,∴BF-EF=DE-EF即BE=DF,在△ABE和△DFC中,∴△ABE≌△DFC(SSS),∴∠B=∠D.在△ABO和△CDO中,∴△ABO≌△CDO(AAS),∴AO=CO,BO=DO,即AC與BD互相平分.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是通過證明△ABE≌△DFC得∠B=∠D,為證明△ABO≌△COD提供條件.4、2【解析】【分析】延長至點(diǎn),使,連接,證明推出,,進(jìn)而得到,從而證明,推出EF=CP,由此求出的周長=AB+AC得到答案.【詳解】解:如圖,延長至點(diǎn),使,連接.∵是等邊三角形,∴.∵,,∴,∴,∴.在和中,,∴,∴,.∵,,∴,∴,∴.在和中,,∴,∴,∴,∴的周長.【考點(diǎn)】此題考查全等三角形的判定及性質(zhì),等邊三角形的性質(zhì),等腰三角形等邊對(duì)等角的性質(zhì),題中輔助線的引出是解題的關(guān)鍵.5、(1)見解析(2)①90°;②見解析【解析】【分析】(1)先

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論