綜合解析人教版8年級數學上冊《全等三角形》同步練習試題(含答案解析)_第1頁
綜合解析人教版8年級數學上冊《全等三角形》同步練習試題(含答案解析)_第2頁
綜合解析人教版8年級數學上冊《全等三角形》同步練習試題(含答案解析)_第3頁
綜合解析人教版8年級數學上冊《全等三角形》同步練習試題(含答案解析)_第4頁
綜合解析人教版8年級數學上冊《全等三角形》同步練習試題(含答案解析)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《全等三角形》同步練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、圖中的小正方形邊長都相等,若,則點Q可能是圖中的(

)A.點D B.點C C.點B D.點A2、如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為(

)A. B. C.10 D.83、如圖:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,則下列說法正確的有幾個(

)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;

(4)AE⊥DE.(5)DE=AEA.2個 B.3個 C.4個 D.54、如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數為()A.15° B.55° C.65° D.75°5、如圖,已知在四邊形中,,平分,,,,則四邊形的面積是(

)A.24 B.30 C.36 D.42第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,四邊形ABCD≌四邊形A′B′C′D′,則∠A的大小是______.2、如圖,AD,BE是的兩條高線,只需添加一個條件即可證明(不添加其它字母及輔助線),這個條件可以是______(寫出一個即可).3、如圖,ADBC,,,連接AC,過點D作于E,過點B作于F.(1)若,則∠ADE為___°(2)寫出線段BF、EF、DE三者間的數量關系___.4、如圖,PM⊥OA,PN⊥OB,∠BOC=30°,PM=PN,則∠AOB=_________.5、如圖,點,,在同一直線上,,,,,若線段與線段的長度之比為,則線段與線段的長度之比為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,PA=PB,∠PAM+∠PBN=180°,求證:OP平分∠AOB.2、如圖,已知,,,求證:.3、如圖1,點P、Q分別是邊長為4cm的等邊三角形ABC的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.(1)連接AQ、CP交于點M,則在P,Q運動的過程中,證明≌;(2)會發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數;(3)P、Q運動幾秒時,是直角三角形?(4)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則變化嗎?若變化說明理由,若不變,則求出它的度數。4、如圖,點C、F在線段BE上,∠ABC=∠DEF=90°,BC=EF,請只添加一個合適的條件使△ABC≌△DEF.(1)根據“ASA”,需添加的條件是;根據“HL”,需添加的條件是;(2)請從(1)中選擇一種,加以證明.5、如圖,在△ABC中,BC=AB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.(1)求證:Rt△ABE≌Rt△CBF;(2)若∠CAB=30°,求∠ACF的度數.-參考答案-一、單選題1、A【解析】【分析】根據全等三角形的判定即可解決問題.【詳解】解:觀察圖象可知△MNP≌△MFD.故選:A.【考點】本題考查全等三角形的判定,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.2、A【解析】【分析】連接AE,由線段垂直平分線的性質得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結AE,設AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因為EF為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關鍵.3、B【解析】【分析】過點E作EF⊥AD垂足為點F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點E作EF⊥AD,垂足為點F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結論(1)正確,則AD=AF+DF=AB+CD,故結論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結論(4)正確.∵AB≠CD,AE≠DE,(5)錯誤,∴△EBA≌△DCE不可能成立,故結論(2)錯誤.綜上所知正確的結論有3個.故答案為:B.【考點】本題考查全等三角形的判定與性質、平行線的判定等內容,作出輔助線是解題的關鍵.4、D【解析】【分析】根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.5、B【解析】【分析】過D作DE⊥AB交BA的延長線于E,根據角平分線的性質得到DE=CD=4,根據三角形的面積公式即可得到結論.【詳解】如圖,過D作DE⊥AB交BA的延長線于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四邊形的面積故選B.【考點】本題考查了角平分線的性質,三角形的面積的計算,正確的作出輔助線是解題的關鍵.二、填空題1、95°【解析】【分析】根據兩個多邊形全等,則對應角相等四邊形以及內角和即可完成【詳解】∵四邊形ABCD≌四邊形A′B′C′D′∴∠D=∠D′=130゜∵四邊形ABCD的內角和為360゜∴∠A=360゜-∠B-∠C-∠D=95゜故答案為:95゜【考點】本題考查了多邊形全等的性質、多邊形的內角和定理,掌握多邊形全等的性質是關鍵.2、(答案不唯一)【解析】【分析】根據已知條件可知,故只要添加一條邊相等即可證明.【詳解】解:添加,AD,BE是的兩條高線,,在與中,.故答案為:(答案不唯一).【考點】本題考查了三角形全等的判定,掌握三角形全等的判定是解題的關鍵.3、

30

【解析】【分析】(1)根據直角三角形兩銳角互余進行倒角即可求解;(2)根據ASA證明≌,即可求解.【詳解】解:(1)∵,且ADBC,,∴,∴,∴,∴;故答案為:30;(2)在和中,,∴≌,∴,,∵,∴.故答案為:【考點】本題考查直角三角形兩銳角互余、全等三角形的判定與性質等內容,根據已知條件進行倒角是解題的關鍵.4、60°或60度【解析】【分析】根據到角的兩邊距離相等的點在角的平分線上判斷出OC平分∠AOB,再根據角平分線的定義可得∠AOB=2∠BOC.【詳解】解:∵PM⊥OA,PN⊥OB,PM=PN,∴OC平分∠AOB,∴∠AOB=2∠BOC,又∠BOC=30°,∴∠AOB=60°.故答案為:60°.【考點】本題考查了角平分線的判定,掌握角平分線的判定是解題的關鍵.5、或【解析】【分析】根據平行線的性質得到CE⊥BC,根據余角的性質得到∠ACB=∠E,根據全等三角形的性質得到CD=AB,BC=CE,等量代換即可得到結論.【詳解】解:∵AB∥EC,AB⊥BC,∴CE⊥BC,∴∠B=∠DCE=90°,∵AC⊥DE,∴∠ACD+∠CDE=∠CDE+∠E=90°,∴∠ACB=∠E,∵AC=DE,∴△ABC≌△DCE(AAS),∴CD=AB,BC=CE,∵線段AB與線段CE的長度之比為5:8,∴CD:BC=5:8,∴線段BD與線段DC的長度之比為3:5,故答案為:3:5.【考點】本題考查了平行線的性質,全等三角形的判定和性質,熟練掌握全等三角形的判定和性質定理是解題的關鍵.三、解答題1、詳見解析【解析】【分析】過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F,根據等角的補角相等可得出∠PAE=∠PBF,結合∠AEP=∠BFP、PA=PB即可證出△APE≌△BPF(AAS),根據全等三角形的性質可得出PE=PF,進而可證出OP平分∠AOB.【詳解】如圖,過點P分別作PE⊥OM,PF⊥ON,垂足分別為E,F,則∠PEA=∠PFB=90°.又∵∠PAM+∠PBN=180°,∠PBF+∠PBN=180°,∴∠PAM=∠PBF,即∠PAE=∠PBF.在△PAE與△PBF中,,∴△PAE≌△PBF(AAS).∴PE=PF.又∵PE⊥OM,PF⊥ON,∴OP平分∠AOB.【考點】本題考查了全等三角形的判定與性質以及角平分線的性質,利用全等三角形的判定定理AAS證出△APE≌△BPF是解題的關鍵.2、證明見解析.【解析】【分析】利用SSS可證明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根據三角形外角的性質即可得∠3=∠BAD+∠ABD,即可得結論.【詳解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考點】本題考查全等三角形的判定與性質及三角形外角性質,熟練掌握判定定理及外角性質是解題關鍵.3、(1)見解析;(2)∠CMQ=60°,不變;(3)當第秒或第秒時,△PBQ為直角三角形;(4)∠CMQ=120°,不變.【解析】【分析】(1)利用SAS可證全等;(2)先證△ABQ≌△CAP,得出∠BAQ=∠ACP,通過角度轉化,可得出∠CMQ=60°;(3)存在2種情況,一種是∠PQB=90°,另一種是∠BPQ=90°,分別根據直角三角形邊直角的關系可求得t的值;(4)先證△PBC≌△ACQ,從而得出∠BPC=∠MQC,然后利用角度轉化可得出∠CMQ=120°.【詳解】(1)證明:在等邊三角形ABC中,AB=AC,∠B=∠CAP=60°又由題中“點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不變∵等邊三角形中,AB=AC,∠B=∠CAP=60°又由條件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(3)設時間為t,則AP=BQ=t,PB=4-t,①當∠PQB=90°時,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②當∠BPQ=90°時,∵∠B=60°,∴BQ=2BQ,得t=2(4-t),t=;∴當第秒或第秒時,△PBQ為直角三角形;(4)∠CMQ=120°不變,∵在等邊三角形中,AB=AC,∠B=∠CAP=60°,∴∠PBC=∠ACQ=120°,又由條件得BP=CQ,∴△PBC≌△ACQ(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°-60°=120°.【考點】本題考查動點問題中三角形的全等,解題關鍵是找出圖形中的全等三角形,利用全等三角形的性質進行角度轉化,得出需要的結論.4、(1)∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE,證明見解析.【解析】【分析】(1)根據題意添加條件即可;(2)選擇添加條件AC=DE,根據“HL”證明即可.【詳解】(1)根據“ASA”,需添加的條件是∠ACB=∠DFE,根據“HL”,需添加的條件是AC=DF,故答案為:∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE證明,證明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【考點】本題考查了全等三角形的判定,熟知全等三角形的判定定理是解題關鍵,證明三角形全等時注意條件的對應.5、(1)證明見解析(2)【解析】【分析】(1)由“HL”可證Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB與∠ACB的度數,即可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論