中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》試題預(yù)測試卷及完整答案詳解【名校卷】_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》試題預(yù)測試卷及完整答案詳解【名校卷】_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》試題預(yù)測試卷及完整答案詳解【名校卷】_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》試題預(yù)測試卷及完整答案詳解【名校卷】_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》試題預(yù)測試卷及完整答案詳解【名校卷】_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》試題預(yù)測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點,連接,將線段繞點B逆時針旋轉(zhuǎn)得到,連接.則在點M運動過程中,線段長度的最小值是(

)A. B.1 C.2 D.2、以下是我國部分博物館標志的圖案,其中既是軸對稱圖形又是中心對稱圖形的是(

)A. B.C. D.3、下列所述圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等腰三角形 B.等邊三角形 C.菱形 D.平行四邊形4、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉(zhuǎn)到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為(

)A.3 B.1 C. D.5、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、下列4種圖案中,是中心對稱圖形的有_____個.2、以水平數(shù)軸的原點為圓心過正半軸上的每一刻度點畫同心圓,將逆時針依次旋轉(zhuǎn)、、、、得到條射線,構(gòu)成如圖所示的“圓”坐標系,點、的坐標分別表示為、,則點的坐標表示為_______.3、如圖所示的圖案由三個葉片組成,繞點O旋轉(zhuǎn)120°后可以和自身重合,若每個葉片的面積為4cm2,∠AOB=120°,則圖中陰影部分的面積為__________.4、如圖,在平面直角坐標系中,,由繞點順時針旋轉(zhuǎn)而得,則所在直線的解析式是___.5、若點與關(guān)于原點對稱,則=_______.三、解答題(5小題,每小題10分,共計50分)1、圖1,圖2都是由邊長為1的小等邊三角形構(gòu)成的網(wǎng)格,每個小等邊三角形的頂點稱為格點,線段的端點均在格點上,分別按要求畫出圖形.(1)在圖1中畫出等腰三角形,且點C在格點上.(畫出一個即可)(2)在圖2中畫出以為邊的菱形,且點D,E均在格點上.2、如圖是由邊長為的小正方形構(gòu)成的的網(wǎng)格,線段的端點均在格點上,請按要求畫圖畫出一個即可.(1)在圖①中以為邊畫一個四邊形,使它的另外兩個頂點在格點上,且該四邊形是中心對稱圖形,但不是軸對稱圖形;(2)在圖②中以為對角線畫一個四邊形,使它的另外兩個頂點在格點上,且所畫四邊形既是軸對稱圖形又是中心對稱圖形.3、在RtABC中,∠ABC=90°,∠A=α,O為AC的中點,將點O沿BC翻折得到點,將ABC繞點順時針旋轉(zhuǎn),使點B與C重合,旋轉(zhuǎn)后得到ECF.(1)如圖1,旋轉(zhuǎn)角為.(用含α的式子表示)(2)如圖2,連BE,BF,點M為BE的中點,連接OM,①∠BFC的度數(shù)為.(用含α的式子表示)②試探究OM與BF之間的關(guān)系.(3)如圖3,若α=30°,請直接寫出的值為.4、小明在一次數(shù)學(xué)活動中,進行了如下的探究活動:如圖,在矩形ABCD中,AB=8,AD=6,以點B為中心,順時針旋轉(zhuǎn)矩形ABCD,得到矩形BEFG,點A、D、C的對應(yīng)點分別為E、F、G.(1)如圖1,當點E落在CD邊上時,求DE的長;(2)如圖2,當點E落在線段DF上時,BE與CD交于點H.①求證:△ABD≌△EBD;②求DH的長.(3)如圖3,若矩形ABCD對角線ACBD相交于點P,連接PE、PF,記△PEF面積為S,請直接寫出S的最值.5、如圖,等腰Rt△ABC中,∠A=45°,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉(zhuǎn)90°后,得到△CBE.(1)求∠DCE的度數(shù);(2)若AB=4,CD=3AD,求DE的長.-參考答案-一、單選題1、A【解析】【分析】取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.2、A【解析】【分析】根據(jù)中心對稱圖形和軸對稱圖形的概念逐項分析即可,軸對稱圖形:平面內(nèi),一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.【詳解】A.既是軸對稱圖形又是中心對稱圖形,故該選項符合題意;B.是軸對稱圖形,但不是中心對稱圖形,故該選項不符合題意;C.不是軸對稱圖形,但是中心對稱圖形,故該選項不符合題意;D.既不是軸對稱圖形也不是中心對稱圖形,故該選項不符合題意.故選A.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合,掌握中心對稱圖形與軸對稱圖形的概念是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、等腰三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、菱形既是軸對稱圖形,又是中心對稱圖形,故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項錯誤.故選C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、D【解析】【分析】根據(jù)題意及旋轉(zhuǎn)的性質(zhì)可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質(zhì),即可求得,由勾股定理即可求得,進而求得陰影部分的面積.【詳解】解:如圖,設(shè)與相交于點,,,,旋轉(zhuǎn),,是等邊三角形,,,,,,,,陰影部分的面積為故選D【考點】本題考查了等邊三角形的性質(zhì),勾股定理,含30度角的直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),利用含30度角的直角三角形的性質(zhì)是解題的關(guān)鍵.5、B【解析】【分析】利用軸對稱圖形和中心對稱圖形的定義逐項判斷即可.【詳解】A.是軸對稱圖形不是中心對稱圖形.故A不符合題意.B.是軸對稱圖形也是中心對稱圖形.故B符合題意.C.是軸對稱圖形但不是中心對稱圖形.故C不符合題意.D.不是中心對稱圖形也不是軸對稱圖形.故D不符合題意.故選:B【考點】本題考查軸對稱圖形和中心對稱圖形的定義,根據(jù)選項靈活判斷其圖形是否符合題意是解本題的關(guān)鍵.二、填空題1、2【解析】【分析】根據(jù)中心對稱圖形的概念即可求解.【詳解】第1個圖形,是中心對稱圖形,符合題意;第2個圖形,不是中心對稱圖形,不符合題意;第3個圖形,是中心對稱圖形,符合題意;第4個圖形,不是中心對稱圖形,不符合題意.故答案為:2.【考點】本題考查了中心對稱圖形,掌握好中心對稱圖形,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.2、【解析】【分析】根據(jù)同心圓的個數(shù)以及每條射線所形成的角度,以及A,B點坐標特征找到規(guī)律,即可求得C點坐標.【詳解】解:圖中為5個同心圓,且每條射線與x軸所形成的角度已知,、的坐標分別表示為、,根據(jù)點的特征,所以點的坐標表示為;故答案為:.【考點】本題考查坐標與旋轉(zhuǎn)的規(guī)律性問題,熟練掌握旋轉(zhuǎn)性質(zhì),并找到規(guī)律是解題的關(guān)鍵.3、4cm2【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)和圖形的特點解答.【詳解】每個葉片的面積為4cm2,因而圖形的面積是12cm2.∵圖案繞點O旋轉(zhuǎn)120°后可以和自身重合,∠AOB為120°,∴圖形中陰影部分的面積是圖形的面積的,因而圖中陰影部分的面積之和為4cm2.故答案為4cm2.【考點】本題考查了圖形的旋轉(zhuǎn)與重合,理解旋轉(zhuǎn)對稱圖形的定義是解決本題的關(guān)鍵.注:旋轉(zhuǎn)對稱圖形的概念:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角.4、.【解析】【分析】過點C作CD⊥x軸于點D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),從而求得點C坐標,設(shè)直線AC的解析式為y=kx+b,將點A,點C坐標代入求得k和b,從而得解.【詳解】解:∵∴過點作軸于點,∴∠BOA=∠ADC=90°.∵∠BAC=90°,∴∠BAO+∠CAD=90°.∵∠ABO+∠BAO=90°,∴∠CAD=∠ABO.∵AB=AC,

∴.∴∴設(shè)直線的解析式為,將點,點坐標代入得∴∴直線的解析式為.故答案為.【考點】本題是幾何圖形旋轉(zhuǎn)與待定系數(shù)法求一次函數(shù)解析式的綜合題,難度中等.5、##0.5##【解析】【詳解】解:∵點(a,1)與(﹣2,b)關(guān)于原點對稱,∴b=﹣1,a=2,∴==.故答案為:.三、解答題1、(1)見解析(2)見解析【解析】【分析】利用軸對稱圖形、中心對稱圖形的特點畫出符合條件的圖形即可;(1)答案不唯一.(2)【考點】本題考查了軸對稱圖形、中心對稱圖形的特點,熟練掌握特殊三角形與四邊形的性質(zhì)才能準確畫出符合條件的圖形.2、(1)見解析;(2)見解析【解析】【分析】(1)根據(jù)旋轉(zhuǎn)和軸對稱的性質(zhì)即可在圖中以為邊畫一個四邊形,使它的另外兩個頂點在格點上,且該四邊形是中心對稱圖形,但不是軸對稱圖形;(2)根據(jù)軸對稱性質(zhì)和中心對稱性質(zhì)即可在圖中以為對角線畫一個四邊形,使它的另外兩個頂點在格點上,且所畫四邊形既是軸對稱圖形又是中心對稱圖形.(1)如圖,四邊形即為所求;(2)如圖,四邊形即為所求.【考點】本題主要考查作圖的旋轉(zhuǎn)變換和軸對稱變換,解題的關(guān)鍵是掌握中心對稱和軸對稱圖形的概念.3、(1);(2)①;②;(3)【解析】【分析】(1)連接OB,,,由,O為BC的中點,得到,則,,再由旋轉(zhuǎn)的性質(zhì)可得,,由此求解即可;(2)①連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,則,可以得到,再由可以得到,由此即可求解;②連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,然后證明,,得到,則,再證明△OBM≌△NEM得到,,從而推出MN為△BFE的中位線,得到,則;(3)連接與BF交于H,由,,可得,,由含30度角的直角三角形的性質(zhì)可以得到,,再由勾股定理可以得到,由此即可得到答案.【詳解】解:(1)如圖所示,連接OB,,,∵,O為BC的中點,∴,∴,∴,∵將點O沿BC翻折得到點,∴,由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴旋轉(zhuǎn)角為,故答案為:;(2)①如圖所示,連接,,由(1)可知(因為也是旋轉(zhuǎn)角),由旋轉(zhuǎn)的性質(zhì)可得,,∴,∴,∵,∴,故答案為:;②如圖所示,連接OB,OE延長OM交EF于N,由①得,由旋轉(zhuǎn)的性質(zhì)可得,,∵,∴,∴,∵,∴,∴,∴,∴,∴∵M為BE的中點,∴,在△OBM和△NEM中,,∴△OBM≌△NEM(SAS),∴,,∴,∴N為EF的中點,∴MN為△BFE的中位線,∴,∴;(3)如圖所示,連接與BF交于H,∵,,∴,,∴,∵,∴,∴,∵,∴,∵,,∴,∵,∴.故答案為:.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,三角形中位線定理,含30度角的直角三角形的性質(zhì),勾股定理,平行線的性質(zhì)與判定等等,解題的關(guān)鍵在于能夠熟練掌握旋轉(zhuǎn)的性質(zhì).4、(1)DE的長為8-2;(2)①見解析;②DH=;(3)9≤S≤39.【解析】【分析】(1)由旋轉(zhuǎn)性質(zhì)知BA=BE=8,由矩形性質(zhì)知BC=AD=6,再在Rt△BCE中根據(jù)勾股定理可得;(2)①利用旋轉(zhuǎn)的性質(zhì)可得:∠A=∠BEF=90°,AB=BE,由“HL”可證△ADB≌△EDB;②由全等三角形的性質(zhì)和平行線的性質(zhì)可得∠BDC=∠EBD,可得BH=DH,由勾股定理可求DH的值;(3)由勾股定理可求BD的值,可得BP=5,當點E在線段BD上時,△PEF面積有最小值,當點E在線段DB延長線上時,△PEF面積有最大值.(1)解:由旋轉(zhuǎn)的性質(zhì)知BA=BE=8,∵四邊形ABCD是矩形,∴AD=BC=6,∠C=90°,∴CE==2;∴DE=CD-CE=8-2;(2)①證明:由旋轉(zhuǎn)知:∠A=∠BEF=90°,AB=BE,∵∠BEF=90°,∴∠BED=90°,又∵BD=BD,∴Rt△ABD≌Rt△EBD(HL);②解:設(shè)DH=x,由①知△ABD≌△EBD,∴∠ABD=∠EBD,又∵在矩形ABCD中,有AB∥CD,∴∠BDC=∠ABD,∴∠BDC=∠EBD,∴BH=DH,∴在Rt△BCH中,由勾股定理得:(8-x)2+62=x2,∴x=,即DH=;(3)解:∵四邊形ABCD是矩形,∴AB=8,AD=BC=6,BP=DP=AP=C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論