版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》強化訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.212、如圖,⊙O的半徑為5,弦AB=8,P是弦AB上的一個動點(不與A,B重合),下列符合條件的OP的值是()A.6.5 B.5.5 C.3.5 D.2.53、如圖,AB為的直徑,C,D為上的兩點,若,則的度數(shù)為(
)A. B. C. D.4、下列多邊形中,內(nèi)角和最大的是(
)A. B. C. D.5、如圖,已知是的兩條切線,A,B為切點,線段交于點M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個數(shù)是(
)A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖是四個全等的正八邊形和一個正方形拼成的圖案,已知正方形的面積為4,則一個正八邊形的面積為____.2、如圖,正五邊形ABCDE內(nèi)接于⊙O,點F在上,則∠CFD=_____度.3、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.4、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F(xiàn),過點F作⊙O的切線FG,交AB于點G,則FG的長為_____.5、如圖,是的內(nèi)接正三角形,點是圓心,點,分別在邊,上,若,則的度數(shù)是____度.三、解答題(5小題,每小題10分,共計50分)1、如圖,AB、CD是⊙O中兩條互相垂直的弦,垂足為點E,且AE=CE,點F是BC的中點,延長FE交AD于點G,已知AE=1,BE=3,OE=.(1)求證:△AED≌△CEB;(2)求證:FG⊥AD;(3)若一條直線l到圓心O的距離d=,試判斷直線l是否是圓O的切線,并說明理由.2、如圖,四邊形內(nèi)接于,對角線,垂足為,于點,直線與直線于點.(1)若點在內(nèi),如圖1,求證:和關(guān)于直線對稱;(2)連接,若,且與相切,如圖2,求的度數(shù).3、如圖,點A,B,C,D在⊙O上,=.求證:(1)AC=BD;(2)△ABE∽△DCE.4、如圖,為的直徑,射線交于點F,點C為劣弧的中點,過點C作,垂足為E,連接.(1)求證:是的切線;(2)若,求陰影部分的面積.5、如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF和AD.(1)求證:EF是⊙O的切線;(2)若⊙O的半徑為2,∠EAC=60°,求AD的長.-參考答案-一、單選題1、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點】此題主要考查了解直角三角形的知識,作出AD⊥BC,進(jìn)而得出相關(guān)線段的長度是解決問題的關(guān)鍵.2、C【解析】【分析】連接OB,作OM⊥AB與M.根據(jù)垂徑定理和勾股定理,求出OP的取值范圍即可判斷.【詳解】解:連接OB,作OM⊥AB與M.∵OM⊥AB,∴AM=BM=AB=4,在直角△OBM中,∵OB=5,BM=4,∴.∴,故選:C.【考點】本題考查了垂徑定理、勾股定理,常把半弦長,半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解.3、B【解析】【分析】連接AD,如圖,根據(jù)圓周角定理得到,,然后利用互余計算出,從而得到的度數(shù).【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.4、D【解析】【分析】根據(jù)多邊形內(nèi)角和公式可直接進(jìn)行排除選項.【詳解】解:A、是一個三角形,其內(nèi)角和為180°;B、是一個四邊形,其內(nèi)角和為360°;C、是一個五邊形,其內(nèi)角和為540°;D、是一個六邊形,其內(nèi)角和為720°;∴內(nèi)角和最大的是六邊形;故選D.【考點】本題主要考查多邊形內(nèi)角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.5、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點,連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯誤,綜上:正確的說法是個,故選C.【考點】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識是解題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)正方形的性質(zhì)得到AB=2,根據(jù)由正八邊形的特點求出∠AOB的度數(shù),過點B作BD⊥OA于點D,根據(jù)勾股定理求出BD的長,由三角形的面積公式求出△AOB的面積,進(jìn)而可得出結(jié)論.【詳解】解:設(shè)正八邊形的中心為O,連接OA,OB,如圖所示,∵正方形的面積為4,∴AB=2,∵AB是正八邊形的一條邊,∴∠AOB==45°.過點B作BD⊥OA于點D,設(shè)BD=x,則OD=x,OB=OA=x,∴AD=x-x,在Rt△ADB中,BD2+AD2=AB2,即x2+(x-x)2=22,解得x2=2+,∴S△AOB=OA?BD=×x2=+1,∴S正八邊形=8S△AOB=8×(+1)=8+8,故答案為:8+8.【考點】本題考查的是正多邊形和圓,正方形的性質(zhì),三角形面積的計算,根據(jù)題意畫出圖形,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.2、36.【解析】【分析】連接OC,OD.求出∠COD的度數(shù),再根據(jù)圓周角定理即可解決問題.【詳解】如圖,連接OC,OD.∵五邊形ABCDE是正五邊形,∴∠COD==72°,∴∠CFD=∠COD=36°,故答案為:36.【考點】本題考查了正多邊形和圓、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識.3、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握圓周角的性質(zhì).4、.【解析】【分析】先利用勾股定理求出AB=10,進(jìn)而求出CD=BD=5,再求出CF=4,進(jìn)而求出DF=3,再判斷出FG⊥BD,利用面積即可得出結(jié)論.【詳解】如圖,在Rt△ABC中,根據(jù)勾股定理得,AB=10,∴點D是AB中點,∴CD=BD=AB=5,連接DF,∵CD是⊙O的直徑,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,連接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切線,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案為.【考點】此題主要考查了直角三角形的性質(zhì),勾股定理,切線的性質(zhì),三角形的中位線定理,三角形的面積公式,判斷出FG⊥AB是解本題的關(guān)鍵.5、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進(jìn)行轉(zhuǎn)化,構(gòu)造輔助線是本題難點,全等以及垂徑定理的應(yīng)用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.三、解答題1、(1)見解析;(2)見解析;(3)直線l是圓O的切線,理由見解析【解析】【分析】(1)由圓周角定理得∠A=∠C,由ASA得出△AED≌△CEB;(2)由直角三角形斜邊上的中線性質(zhì)得EF=BC=BF,由等腰三角形的性質(zhì)得∠FEB=∠B,由圓周角定理和對頂角相等證出∠A+∠AEG=90°,進(jìn)而得出結(jié)論;(3)作OH⊥AB于H,連接OB,由垂徑定理得出AH=BH=AB=2,則EH=AH?AE=1,由勾股定理求出OH=1,OB=,由一條直線l到圓心O的距離d=等于⊙O的半徑,即可得出結(jié)論.【詳解】(1)證明:由圓周角定理得:∠A=∠C,在△AED和△CEB中,,∴△AED≌△CEB(ASA);(2)證明:∵AB⊥CD,∴∠AED=∠CEB=90°,∴∠C+∠B=90°,∵點F是BC的中點,∴EF=BC=BF,∴∠FEB=∠B,∵∠A=∠C,∠AEG=∠FEB=∠B,∴∠A+∠AEG=∠C+∠B=90°,∴∠AGE=90°,∴FG⊥AD;(3)解:直線l是圓O的切線,理由如下:作OH⊥AB于H,連接OB,如圖所示:∵AE=1,BE=3,∴AB=AE+BE=4,∵OH⊥AB,∴AH=BH=AB=2,∴EH=AH﹣AE=1,∴OH===1,∴OB===,即⊙O的半徑為,∵一條直線l到圓心O的距離d==⊙O的半徑,∴直線l是圓O的切線.【考點】本題是圓的綜合題目,考查了圓周角定理、垂徑定理、切線的判定、全等三角形的判定、直角三角形斜邊上的中線性質(zhì)、等腰三角形的性質(zhì)、勾股定理等知識;本題綜合性強,熟練掌握圓周角定理和垂徑定理是解題的關(guān)鍵.2、(1)見解析;(2)【解析】【分析】(1)根據(jù)垂直及同弧所對圓周角相等性質(zhì),可得,可證與全等,得到,進(jìn)一步即可證點和關(guān)于直線成軸對稱;(2)作出相應(yīng)輔助線如解析圖,可得與全等,利用全等三角形的性質(zhì)及切線的性質(zhì),可得,根據(jù)平行線的性質(zhì)及三角形內(nèi)角和即可得出答案.【詳解】解:(1)證明:∵,,∴,∵,∴,又∵同弧所對圓周角相等,∴,∴,在與中,∴,∴,又,∴點和關(guān)于直線成軸對稱;(2)如圖,延長交于點,連接,,,,∵,,∴、、、四點共圓,、、、四點共圓,∴,,在與中,,∴,∴,∴為等腰直角三角形,∴,∴,又,∴,∵與相切,∴,∴,∴,∴,∴,∴.【考點】題目主要考查圓的有關(guān)性質(zhì)、三角形全等、成軸對稱、平行線性質(zhì)等,作出相應(yīng)輔助線及對各知識點的熟練運用是解題的關(guān)鍵.3、(1)見解析(2)見解析【解析】【分析】(1)兩個等弧同時加上一段弧后兩弧仍然相等;再通過同弧所對的弦相等證明即可;(2)根據(jù)同弧所對的圓周角相等,對頂角相等即可證明相似.(1)∵=∴=∴∴BD=AC(2)∵∠B=∠C;∠AEB=∠DEC∴△ABE∽△DCE【考點】本題考查等弧所對弦相等、所對圓周角相等,掌握這些是本題關(guān)鍵.4、(1)證明見解析;(2).【解析】【分析】(1)連接BF,證明BF//CE,連接OC,證明OC⊥CE即可得到結(jié)論;(2)連接OF,求出扇形FOC的面積即可得到陰影部分的面積.【詳解】(1)連接,是的直徑,,即,,連接,∵點C為劣弧的中點,,∵,∵OC是的半徑,∴CE是的切線;(2)連接,,∵點C為劣弧的中點,,,,,∴S扇形FOC=,即陰影部分的面積為:.【考點】本題主要考查了切線的判定以及扇形面積的求法,熟練掌握切線的判定定理以及扇形面積的求法是解答此題的關(guān)鍵.5、(1)見解析;(2)AD=.【解析】【分析】(1)連接FO,可根據(jù)三角形中位線的性質(zhì)可判斷易證OF∥AB,然后根據(jù)直徑所對的圓周角是直角,可得CE⊥AE,進(jìn)而知OF⊥CE,然后根據(jù)垂徑定理可得∠FEC=∠FCE,∠OEC=∠OCE,再通過Rt△ABC可知∠OEC+∠FEC=90°,因此可證FE為⊙O的切線;(2)在Rt△OCD中和Rt△ACD中,分別利用勾股定理分別求出CD,AD的長即可.【詳解】(1)證明:連接CE,如圖所示:∵AC為⊙O的直徑,∴∠AEC=90°.∴∠BEC=90°,∵點F為BC的中點,∴EF=BF=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 驗房師標(biāo)準(zhǔn)化模擬考核試卷含答案
- 肥皂制造工崗前基礎(chǔ)能力考核試卷含答案
- 變配電運行值班員創(chuàng)新應(yīng)用模擬考核試卷含答案
- 2026年消防設(shè)施操作員之消防設(shè)備初級技能考試題庫150道一套
- 油母頁巖干餾工安全文明知識考核試卷含答案
- 造價工程師項目成本控制要點
- 建筑施工安全風(fēng)險管控制度
- 2026年勞務(wù)員考試題庫500道附答案【研優(yōu)卷】
- 家用電冰箱維修工崗前技巧考核試卷含答案
- 2026年網(wǎng)絡(luò)預(yù)約出租汽車駕駛員從業(yè)資格考試題庫及答案1套
- 橈骨骨折骨折護理查房講課件
- 人字梯使用管理制度
- 2025-2030年中國動脈瘤栓塞和栓塞裝置行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 《商品攝影》課件 第2章 布景、布光與構(gòu)圖
- 哈三中2025年高三第三次模擬考試歷史試卷(含答案)
- 第章直升機液壓系統(tǒng)南通航運課件
- ELK培訓(xùn)課件教學(xué)課件
- 物業(yè)服務(wù)-公司物業(yè)服務(wù)方案及費用測算
- 2025年天津濱海新區(qū)建設(shè)投資集團招聘筆試參考題庫含答案解析
- 本科課件-組織行為學(xué)第二版
- TSG 51-2023 起重機械安全技術(shù)規(guī)程 含2024年第1號修改單
評論
0/150
提交評論