版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、解答題1.如圖,在平面直角坐標系中,點,,將線段AB進行平移,使點A剛好落在x軸的負半軸上,點B剛好落在y軸的負半軸上,A,B的對應(yīng)點分別為,,連接交y軸于點C,交x軸于點D.(1)線段可以由線段AB經(jīng)過怎樣的平移得到?并寫出,的坐標;(2)求四邊形的面積;(3)P為y軸上的一動點(不與點C重合),請?zhí)骄颗c的數(shù)量關(guān)系,給出結(jié)論并說明理由.2.如圖1,已知直線CD∥EF,點A,B分別在直線CD與EF上.P為兩平行線間一點.(1)若∠DAP=40°,∠FBP=70°,則∠APB=(2)猜想∠DAP,∠FBP,∠APB之間有什么關(guān)系?并說明理由;(3)利用(2)的結(jié)論解答:①如圖2,AP1,BP1分別平分∠DAP,∠FBP,請你寫出∠P與∠P1的數(shù)量關(guān)系,并說明理由;②如圖3,AP2,BP2分別平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代數(shù)式表示)3.已知,點為平面內(nèi)一點,于.(1)如圖1,求證:;(2)如圖2,過點作的延長線于點,求證:;(3)如圖3,在(2)問的條件下,點、在上,連接、、,且平分,平分,若,,求的度數(shù).4.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當∠APM+∠QMN=90°時,①試判斷PM與MN的位置關(guān)系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關(guān)系.(注:此題說理時不能使用沒有學過的定理)5.已知,AB∥CD.點M在AB上,點N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關(guān)系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出∠FEQ的度數(shù).6.已知:ABCD.點E在CD上,點F,H在AB上,點G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請寫出你的猜想,并加以證明.7.閱讀材料:求1+2+22+23+24+…+22017的值.解:設(shè)S=1+2+22+23+24+…+22017,將等式兩邊同時乘以2得:2S=2+22+23+24+…+22017+22018將下式減去上式得2S-S=22018-1即S=22018-1即1+2+22+23+24+…+22017=22018-1請你仿照此法計算:(1)1+2+22+23+…+29=_____;(2)1+5+52+53+54+…+5n(其中n為正整數(shù));(3)1+2×2+3×22+4×23+…+9×28+10×29.8.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.9.我們知道,任意一個正整數(shù)n都可以進行這樣的分解:(p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的完美分解.并規(guī)定:.例如18可以分解成1×18,2×9或3×6,因為18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.(1)F(13)=,F(xiàn)(24)=;(2)如果一個兩位正整數(shù)t,其個位數(shù)字是a,十位數(shù)字為,交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;(3)在(2)所得“和諧數(shù)”中,求F(t)的最大值.10.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:11.探究與應(yīng)用:觀察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……問題:(1)在橫線上填上適當?shù)臄?shù);(2)寫出一個能反映此計算一般規(guī)律的式子;(3)根據(jù)規(guī)律計算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(結(jié)果用科學記數(shù)法表示)12.我們已經(jīng)學習了“乘方”運算,下面介紹一種新運算,即“對數(shù)”運算.定義:如果(a>0,a≠1,N>0),那么b叫做以a為底N的對數(shù),記作.例如:因為,所以;因為,所以.根據(jù)“對數(shù)”運算的定義,回答下列問題:(1)填空:,.(2)如果,求m的值.(3)對于“對數(shù)”運算,小明同學認為有“(a>0,a≠1,M>0,N>0)”,他的說法正確嗎?如果正確,請給出證明過程;如果不正確,請說明理由,并加以改正.13.如圖,已知點,點,且,滿足關(guān)系式.(1)求點、的坐標;(2)如圖1,點是線段上的動點,軸于點,軸于點,軸于點,連接、.試探究,之間的數(shù)量關(guān)系;(3)如圖2,線段以每秒2個單位長度的速度向左水平移動到線段.若線段交軸于點,當三角形和三角形的面積相等時,求移動時間和點的坐標.14.如圖1,//,點、分別在、上,點在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點、,且,直接寫出的值.15.如圖:在四邊形ABCD中,A、B、C、D四個點的坐標分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點的坐標.(2)若四邊形內(nèi)部有一點P的坐標為(a,b)寫點P的對應(yīng)點P′的坐標.(3)求四邊形ABCD的面積.16.對于平面直角坐標系xOy中的任意兩點M(x1,y1),N(x2,y2),給出如下定義:將|x1﹣x2|稱為點M,N之間的“橫長”,|y1﹣y2|稱為點M,N之間的縱長”,點M與點N的“橫長”與“縱長”之和稱為“折線距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若點M(﹣1,1),點N(2,﹣2),則點M與點N的“折線距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根據(jù)以上定義,解決下列問題:已知點P(3,2).(1)若點A(a,2),且d(P,A)=5,求a的值;(2)已知點B(b,b),且d(P,B)<3,直接寫出b的取值范圍;(3)若第一象限內(nèi)的點T與點P的“橫長”與“縱長”相等,且d(P,T)>5,簡要分析點T的橫坐標t的取值范圍.17.如圖,點A(1,n),B(n,1),我們定義:將點A向下平移1個單位,再向右平移1個單位,同時點B向上平移1個單位,再向左平移1個單位稱為一次操作,此時平移后的兩點記為A1,B1,t次操作后兩點記為At,Bt.(1)直接寫出A1,B1,At,Bt的坐標(用含n、t的式子表示);(2)以下判斷正確的是.A.經(jīng)過n次操作,點A,點B位置互換B.經(jīng)過(n﹣1)次操作,點A,點B位置互換C.經(jīng)過2n次操作,點A,點B位置互換D.不管幾次操作,點A,點B位置都不可能互換(3)t為何值時,At,B兩點位置距離最近?18.在平面直角坐標系中,,滿足.(1)直接寫出、的值:;;(2)如圖1,若點滿足的面積等于6,求的值;(3)設(shè)線段交軸于C,動點E從點C出發(fā),在軸上以每秒1個單位長度的速度向下運動,動點F從點出發(fā),在軸上以每秒2個單位長度的速度向右運動,若它們同時出發(fā),運動時間為秒,問為何值時,有?請求出的值.19.我國傳統(tǒng)數(shù)學名著《九章算術(shù)》記載:“今有牛五、羊二,直金十九兩;牛二、羊五,直金十六兩.問牛、羊各直金幾何?”譯文:“假設(shè)有5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子.問每頭牛、每只羊分別值銀子多少兩?”根據(jù)以上譯文,提出以下兩個問題:(1)求每頭牛、每只羊各值多少兩銀子?(2)若某商人準備用20兩銀子買牛和羊(要求既有牛也有羊,且銀兩須全部用完),請問商人有幾種購買方法?列出所有的可能.20.如圖,,是的平分線,和的度數(shù)滿足方程組,(1)求和的度數(shù);(2)求證:.(3)求的度數(shù).21.新定義,若關(guān)于,的二元一次方程組①的解是,關(guān)于,的二元一次方程組②的解是,且滿足,,則稱方程組②的解是方程組①的模糊解.關(guān)于,的二元一次方程組的解是方程組的模糊解,則的取值范圍是________.22.小明為班級購買信息學編程競賽的獎品后,回學校向班主任李老師匯報說:“我買了兩種書,共30本,單價分別為20元和24元,買書前我領(lǐng)了700元,現(xiàn)在還余38元.”李老師算了一下,說:“你肯定搞錯了.”(1)李老師為什么說他搞錯了?試用方程的知識給予解釋;(2)小明連忙拿出購物發(fā)票,發(fā)現(xiàn)的確弄錯了,因為他還買了一個筆記本.但筆記本的單價已模糊不清,只能辨認出應(yīng)為小于10元的整數(shù),如果單價為20元的書多于24元的書,請問:筆記本的單價為多少元?23.如果3個數(shù)位相同的自然數(shù)m,n,k滿足:m+n=k,且k各數(shù)位上的數(shù)字全部相同,則稱數(shù)m和數(shù)n是一對“黃金搭檔數(shù)”.例如:因為25,63,88都是兩位數(shù),且25+63=88,則25和63是一對“黃金搭檔數(shù)”.再如:因為152,514,666都是三位數(shù),且152+514=666,則152和514是一對“黃金搭檔數(shù)”.(1)分別判斷87和12,62和49是否是一對“黃金搭檔數(shù)”,并說明理由;(2)已知兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,若s和t是一對“黃金搭檔數(shù)”,并且s與t的和能被7整除,求出滿足題意的s.24.如圖,在平面直角坐標系中,點為坐標原點,點的坐標為,點的坐標為,其中是二元一次方程組的解,過點作軸的平行線交軸于點.(1)求點的坐標;(2)動點從點出發(fā),以每秒個單位長度的速度沿射線的方向運動,連接,設(shè)點的運動時間為秒,三角形的面積為,請用含的式子表示(不用寫出相應(yīng)的的取值范圍);(3)在(2)的條件下,在動點從點出發(fā)的同時,動點從點出發(fā)以每秒個單位長度的速度沿線段的方向運動.過點作直線的垂線,點為垂足;過點作直線的垂線,點為垂足.當時,求的值.25.定義一種新運算“a※b”:當a≥b時,a※b=2a+b;當a<b時,a※b=2a﹣b.例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3=;(2)若(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),則x的取值范圍為;(3)已知(2x﹣6)※(9﹣3x)<7,求x的取值范圍;(4)小明在計算(2x2﹣2x+4)※(x2+4x﹣6)時隨意取了一個x的值進行計算,得出結(jié)果是0,小麗判斷小明計算錯了,小麗是如何判斷的?請說明理由.26.在平面直角坐標系xOy中.點A,B,P不在同一條直線上.對于點P和線段AB給出如下定義:過點P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點P為線段AB的內(nèi)垂點.若垂足Q滿足|AQ-BQ|最小,則稱點P為線段AB的最佳內(nèi)垂點.已知點A(﹣2,1),B(1,1),C(﹣4,3).(1)在點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為;(2)點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2,則點M的坐標為;(3)點N在y軸上且為線段AC的內(nèi)垂點,則點N的縱坐標n的取值范圍是;(4)已知點D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點,求m的取值范圍.27.我們把關(guān)于x的一個一元一次方程和一個一元一次不等式組合成一種特殊組合,且當一元一次方程的解正好也是一元一次不等式的解時,我們把這種組合叫做“有緣組合”;當一元一次方程的解不是一元一次不等式的解時,我們把這種組合叫做“無緣組合”.(1)請判斷下列組合是“有緣組合”還是“無緣組合”,并說明理由;①;②.(2)若關(guān)于x的組合是“有緣組合”,求a的取值范圍;(3)若關(guān)于x的組合是“無緣組合”;求a的取值范圍.28.對于三個數(shù),,,表示,,這三個數(shù)的平均數(shù),表示,,這三個數(shù)中最小的數(shù),如:,;,.解決下列問題:(1)填空:______;(2)若,求的取值范圍;(3)①若,那么______;②根據(jù)①,你發(fā)現(xiàn)結(jié)論“若,那么______”(填,,大小關(guān)系);③運用②解決問題:若,求的值.29.如圖①,在平直角坐標系中,△ABO的三個頂點為A(a,b),B(﹣a,3b),O(0,0),且滿足|b﹣2|=0,線段AB與y軸交于點C.(1)求出A,B兩點的坐標;(2)求出△ABO的面積;(3)如圖②,將線段AB平移至B點的對應(yīng)點落在x軸的正半軸上時,此時A點的對應(yīng)點為,記△的面積為S,若24<S<32,求點的橫坐標的取值范圍.30.如圖,在平面直角坐標系中,點O為坐標原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標;(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應(yīng)點分別為點P和點Q(點P與點B不重合),設(shè)點P的縱坐標為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設(shè)PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)向左平移4個單位,再向下平移6個單位,,;(2)24;(3)見解析【分析】(1)利用平移變換的性質(zhì)解決問題即可.(2)利用分割法確定四邊形的面積即可.(3)分兩種情形:點在點的上方,點在點的下方,分別求解即可.【詳解】解:(1)點,,又將線段進行平移,使點剛好落在軸的負半軸上,點剛好落在軸的負半軸上,線段是由線段向左平移4個單位,再向下平移6個單位得到,,.(2).(3)連接.,,的中點坐標為在軸上,.,軸,同法可證,,,,同法可證,,,,當點在點的下方時,,,,,當點在點的上方時,.【點睛】本題考查坐標與圖形變化—平移,解題的關(guān)鍵是理解題意,學會有分割法求四邊形的面積,學會用分類討論的思想解決問題,屬于中考??碱}型.2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由見解析;(3)①∠P=2∠P1,理由見解析;②∠AP2B=.【分析】(1)過P作PM∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠APM=∠DAP,再根據(jù)平行公理求出CD∥EF然后根據(jù)兩直線平行,內(nèi)錯角相等可得∠MPB=∠FBP,最后根據(jù)∠APM+∠MPB=∠DAP+∠FBP等量代換即可得證;(2)結(jié)論:∠APB=∠DAP+∠FBP.(3)①根據(jù)(2)的規(guī)律和角平分線定義解答;②根據(jù)①的規(guī)律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根據(jù)角平分線的定義和平角等于180°列式整理即可得解.【詳解】(1)證明:過P作PM∥CD,∴∠APM=∠DAP.(兩直線平行,內(nèi)錯角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一條直線的兩條直線互相平行),∴∠MPB=∠FBP.(兩直線平行,內(nèi)錯角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性質(zhì))即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)結(jié)論:∠APB=∠DAP+∠FBP.理由:見(1)中證明.(3)①結(jié)論:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分別平分∠CAP、∠EBP,∴∠CAP2=∠CAP,∠EBP2=∠EBP,∴∠AP2B=∠CAP+∠EBP,=(180°-∠DAP)+(180°-∠FBP),=180°-(∠DAP+∠FBP),=180°-∠APB,=180°-β.【點睛】本題考查了平行線的性質(zhì),角平分線的定義,熟記性質(zhì)與概念是解題的關(guān)鍵,此類題目,難點在于過拐點作平行線.3.(1)見解析;(2)見解析;(3).【分析】(1)先根據(jù)平行線的性質(zhì)得到,然后結(jié)合即可證明;(2)過作,先說明,然后再說明得到,最后運用等量代換解答即可;(3)設(shè)∠DBE=a,則∠BFC=3a,根據(jù)角平分線的定義可得∠ABD=∠C=2a,∠FBC=∠DBC=a+45°,根據(jù)三角形內(nèi)角和可得∠BFC+∠FBC+∠BCF=180°,可得∠AFC=∠BCF的度數(shù)表達式,再根據(jù)平行的性質(zhì)可得∠AFC+∠NCF=180°,代入即可算出a的度數(shù),進而完成解答.【詳解】(1)證明:∵,∴,∵于,∴,∴,∴;(2)證明:過作,∵,∴,又∵,∴,∴,∵,∴,∴,∴;(3)設(shè)∠DBE=a,則∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【點睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì)及角的計算,熟練應(yīng)用平行線的性質(zhì)、角平分線的性質(zhì)是解答本題的關(guān)鍵.4.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,同位角相等等知識是解題的關(guān)鍵.5.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;過F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作平行線的輔助線是解題的關(guān)鍵.6.(1)見解析;(2),證明見解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過點作,過點作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過點作,過點作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.7.(1)210-1;(2);(3)9×210+1.【分析】(1)根據(jù)題目中材料可以得到用類比的方法得到1+2+22+23+…+29的值;(2)根據(jù)題目中材料可以得到用類比的方法得到1+5+52+53+54+…+5n的值.(3)根據(jù)題目中的信息,運用類比的數(shù)學思想可以解答本題.【詳解】解:(1)設(shè)S=1+2+22+23+…+29,將等式兩邊同時乘以2得:2S=2+22+23+24+…+29+210,將下式減去上式得2S-S=210-1,即S=210-1,即1+2+22+23+…+29=210-1.故答案為210-1;(2)設(shè)S=1+5+52+53+54+…+5n,將等式兩邊同時乘以5得:5S=5+52+53+54+55+…+5n+5n+1,將下式減去上式得5S-S=5n+1-1,即S=,即1+5+52+53+54+…+5n=;(3)設(shè)S=1+2×2+3×22+4×23+…+9×28+10×29,將等式兩邊同時乘以2得:2S=2+2×22+3×23+4×24+…+9×29+10×210,將上式減去下式得-S=1+2+22+23+…+29+10×210,-S=210-1-10×210,S=9×210+1,即1+2×2+3×22+4×23+…+9×28+10×29=9×210+1.【點睛】本題考查有理數(shù)的混合運算、數(shù)字的變化類,解題的關(guān)鍵是明確題意,發(fā)現(xiàn)數(shù)字的變化規(guī)律.8.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關(guān)鍵.9.(1),(2)所以和諧數(shù)為15,26,37,48,59;(3)F(t)的最大值是.【分析】(1)根據(jù)題意,按照新定義的法則計算即可.(2)根據(jù)新定義的”和諧數(shù)”定義,將數(shù)用a,b表示列出式子解出即可.(3)根據(jù)(2)中計算的結(jié)果求出最大即可.【詳解】解:(1)F(13)=,F(xiàn)(24)=;(2)原兩位數(shù)可表示為新兩位數(shù)可表示為∴∴∴∴∴(且b為正整數(shù))∴b=2,a=5;b=3,a=6,b=4,a=7,b=5,a=8b=6,a=9所以和諧數(shù)為15,26,37,48,59(3)所有“和諧數(shù)”中,F(xiàn)(t)的最大值是.【點睛】本題為新定義的題型,關(guān)鍵在于讀懂題意,按照規(guī)定解題.10.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.11.(1)2、3、4、5;(2)第n個等式為1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1)根據(jù)從1開始連續(xù)n各奇數(shù)的和等于奇數(shù)的個數(shù)的平方即可得到.(2)根據(jù)規(guī)律寫出即可.(3)先提取符號,再用規(guī)律解題.【詳解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案為:2、3、4、5;(2)第n個等式為1+3+5+7+…+(2n+1)=(3)原式=﹣(1+3+5+7+9+…+2019)=﹣10102=﹣1.0201×106.【點睛】本題考查數(shù)字變化規(guī)律,解題的關(guān)鍵是找到第一個的規(guī)律,然后加以運用即可.12.(1)1,4;(2)m=10;(3)不正確,改正見解析.【解析】試題分析:(1)根據(jù)新定義由61=6、34=81可得log66=1,log381=4;(2)根據(jù)定義知m﹣2=23,解之可得;(3)設(shè)ax=M,ay=N,則logaM=x、logaN=y,根據(jù)ax?ay=ax+y知ax+y=M?N,繼而得logaMN=x+y,據(jù)此即可得證.試題解析:解:(1)∵61=6,34=81,∴l(xiāng)og66=1,log381=4.故答案為:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正確,設(shè)ax=M,ay=N,則logaM=x,logaN=y(a>0,a≠1,M、N均為正數(shù)).∵ax?ay=,∴=M?N,∴l(xiāng)ogaMN=x+y,即logaMN=logaM+logaN.點睛:本題考查了有理數(shù)和整式的混合運算,解題的關(guān)鍵是明確題意,可以利用新定義進行解答問題.13.(1);(2);(3),點C的坐標為【分析】(1)由題意易得,然后可求a、b的值,進而問題可求解;(2)由(1)及題意易得,然后根據(jù)建立方程求解即可;(3)分別過點作軸于點P,軸于點Q,由題意易得,然后可得,進而可求t的值,最后根據(jù)(2)可得三角形的面積為3,則問題可求解.【詳解】解:(1)∵,∴,∴,∴點,點;(2)由(1)可得點,點,∵軸于點,軸于點,軸于點,∴,,∵,∴,∵,且,∴,化簡得;(3)分別過點作軸于點P,軸于點Q,如圖所示:∵線段以每秒2個單位長度的速度向左水平移動到線段,時間為,∴,∵三角形和三角形的面積相等,∴,∴,∴,解得:,∴,由(2)可得三角形的面積為,∴三角形的面積為3,即,∴,∴.【點睛】本題主要考查圖形與坐標、算術(shù)平方根與偶次冪的非負性及等積法,熟練掌握圖形與坐標、算術(shù)平方根與偶次冪的非負性及等積法是解題的關(guān)鍵.14.(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進而求解;(3)設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計算可求解n值.【詳解】證明:過點O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點M作MK∥AB,過點N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗,符合題意,故答案為:.【點睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運用平行線的性質(zhì)是解題的關(guān)鍵.15.(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對應(yīng)點的坐標進而得出答案;(2)利用平移規(guī)律進而得出對應(yīng)點坐標的變化規(guī)律:向上平移1個單位,縱坐標加1;向左平移2個單位,橫坐標減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內(nèi)部有一點P的坐標為(a,b)寫點P的對應(yīng)點P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點睛】此題主要考查了平移變換以及坐標系內(nèi)四邊形面積求法,正確得出對應(yīng)點位置是解題關(guān)鍵.16.(1)a=﹣2或a=8;(2)1<b<4;(3)t或0<t.【分析】(1)將點P與點A代入d(M,N)=|x1?x2|+|y1?y2|即可求解;(2)將點B與點P代入d(M,N)=|x1?x2|+|y1?y2|,得到d(P,B)=|3?b|+|2?b|,分三種情況去掉絕對值符號進行化簡,有當b<2時,d(P,B)=3?b+2?b=5?2b<3;當2≤b≤3時,d(P,B)=3?b+b?2=1<3;當b>3時,d(P,B)=b?3+b?2=2b?5<3;(3)設(shè)T點的坐標為(t,m),由點T與點P的“橫長”與“縱長”相等,得到|t?3|=|m?2|,得到t與m的關(guān)系式,再由T在第一象限,d(P,T)>5,結(jié)合求解即可.【詳解】(1)∵點P(3,2),點A(a,2),∴d(P,A)=|3﹣a|+|2﹣2|=5,∴a=﹣2或a=8;(2)∵點P(3,2),點B(b,b),∴d(P,B)=|3﹣b|+|2﹣b|,當b<2時,d(P,B)=3﹣b+2﹣b=5﹣2b<3,∴b>1,∴1<b<2;當2≤b≤3時,d(P,B)=3﹣b+b﹣2=1<3成立,∴2≤b≤3;當b>3時,d(P,B)=b﹣3+b﹣2=2b﹣5<3,∴b<4,∴3<b<4;綜上所述:1<b<4;(3)設(shè)T點的坐標為(t,m),點T與點P的“橫長”=|t﹣3|,點T與點P的“縱長”=|m﹣2|.∵點T與點P的“橫長”與“縱長”相等,∴|t﹣3|=|m﹣2|,∴t﹣3=m﹣2或t﹣3=2﹣m,∴m=t﹣1或m=5﹣t.∵點T是第一象限內(nèi)的點,∴m>0,∴t>1或t<5,又∵d(P,T)>5,∴2|t﹣3|>5,∴t或t,∴t或0<t.【點睛】本題考查平面內(nèi)點的坐標,新定義;能夠?qū)⒍x內(nèi)容轉(zhuǎn)化為絕對值不等式,再將絕對值不等式根據(jù)絕對值的意義轉(zhuǎn)化為一元一次不等式的求解是解題的關(guān)鍵.17.(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)B;(3)t=或t=或t=【分析】(1)根據(jù)點在平面直角坐標系中的平移規(guī)律求解可得答案;(2)由1+t=n時t=n﹣1,知n﹣t=n﹣(n﹣1)=1,據(jù)此可得答案;(3)分n為奇數(shù)和偶數(shù)兩種情況,得出對應(yīng)的方程,解之可得n關(guān)于t的式子.【詳解】解:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)當1+t=n時,t=n﹣1.此時n﹣t=n﹣(n﹣1)=1,故選:B;(3)當n為奇數(shù)時:1+t=n﹣t解得t=,當n為偶數(shù)時:1+t=n﹣t+1解得t=,或1+t=n﹣t﹣1解得t=.【點睛】本題主要考查坐標與圖形變化—平移,解題的關(guān)鍵是掌握點在平面直角坐標系中的平移規(guī)律:橫坐標,右移加,左移減;縱坐標,上移加,下移減.18.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)過點作直線軸,延長交于,設(shè)出點坐標,根據(jù)面積關(guān)系求出點坐標,再求出的長度,即可求出值;(3)先根據(jù)求出點坐標,再根據(jù)面積關(guān)系求出值即可.【詳解】解:(1),,,,,故答案為,2;(2)如圖1,過作直線垂直于軸,延長交直線于點,設(shè)的坐標為,過作交直線于點,連接,,,,解得,,,又點滿足的面積等于6,,解得或;(3)如圖2,延長交軸于,過作軸于,過作軸于,,,解得,,,,解得,,,,由題知,當秒時,,,,,,,,解得或2.【點睛】本題是三角形綜合題,考查三角形的面積,熟練掌握直角坐標系的知識,三角形的面積,梯形面積等知識是解題的關(guān)鍵.19.(1)每頭牛3兩銀子,每頭羊2兩銀子;(2)共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊【分析】(1)設(shè)每頭牛值x兩銀子,每只羊值y兩銀子,根據(jù)“5頭牛、2只羊,值19兩銀子;2頭牛、5只羊,值16兩銀子”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)購買a頭牛,b只羊,利用總價=單價×數(shù)量,即可得出關(guān)于a,b的二元一次方程,結(jié)合a,b均為正整數(shù),即可得出各購買方案.【詳解】解:(1)設(shè)每頭牛x兩銀子,每頭羊y兩銀子,根據(jù)題意,得解得答:每頭牛3兩銀子,每頭羊2兩銀子.(含設(shè))(2)設(shè)該商人購買了a頭牛,b頭羊,根據(jù)題意,得∵a、b均為正整數(shù)∴該方程的解為或或所以共有三種購買方法:方案一:購買2頭牛,7頭羊;方案二:購買4頭牛,4頭羊;方案三:購買6頭牛,1頭羊.【點睛】本題考查了二元一次方程組的應(yīng)用、數(shù)學常識以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)找準等量關(guān)系,正確列出二元一次方程.20.(1)和的度數(shù)分別為和;(2)見解析;(3)【分析】根據(jù),解二元一次方程組,求出和的度數(shù);根據(jù)平行線判定定理,判定;由“是的平分線”:,再根據(jù)平行線判定定理,求出的度數(shù).【詳解】解:(1)①②,得,,代入①得和的度數(shù)分別為和.(2),(3)是的平分線,【點睛】本題運用二元一次方程組給出已知條件,熟練掌握二元一次方程組的解法以及平行線相關(guān)定理是解題的關(guān)鍵.21.【分析】根據(jù)已知條件,先求出兩個方程組的解,再根據(jù)“模糊解”的定義列出不等式組,解得m的取值范圍便可.【詳解】解:解方程組得:,解方程組得:,∵關(guān)于,的二元一次方程組的解是方程組的模糊解,因此有:且,化簡得:,即解得:,故答案為.【點睛】本題主要考查了新定義,二元一次方程組的解,解絕對值不等式,考查了學生的閱讀理解能力、知識的遷移能力以及計算能力,難度適中.正確理解“模糊解”的定義是解題的關(guān)鍵.22.(1)見解析;(2)6元【分析】(1)設(shè)單價為20元的書買了x本,單價為24元的書買了y本,根據(jù)總價=單價×數(shù)量,結(jié)合購買兩種書30本共花費(700?38)元,即可得出關(guān)于x,y的二元一次方程組,解之即可得出x,y的值,結(jié)合x,y的值為整數(shù),即可得出小明搞錯了;(2)設(shè)單價為20元的書買了a本,則單價為24元的書買了(30?a)本,筆記本的單價為b元,根據(jù)總價=單價×數(shù)量,即可得出關(guān)于a,b的二元一次方程,化簡后可得出a=14+,結(jié)合0<b<10,且a,b均為整數(shù),可得出b=2或6,將b值代入a=14+中可求出a值,再結(jié)合單價為20元的書多于24元的書,即可確定b值.【詳解】解:(1)設(shè)20元的書買了本,24元的書買了本,由題意,得,解得,∵,的值為整數(shù),故,的值不符合題意(只需求出一個即可)∴小明搞錯了;(2)設(shè)20元的書買了本,則24元的書買了本,筆記本的單價為元,由題意,得:,化簡得:∵,∴或6.當,,即20元的書買了15本,24元的書買了15本,不合題意舍去當,,即20元的書買了16本,則24元的書買了14本∴.答:筆記本的價格為6元.【點睛】本題考查了二元一次方程組的應(yīng)用以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:(1)找準等量關(guān)系,正確列出二元一次方程組;(2)找準等量關(guān)系,正確列出二元一次方程.23.(1)87和12是“黃金搭檔數(shù)”,62和49不是“黃金搭檔數(shù)”,理由見解析;(2)39或38【分析】(1)根據(jù)“黃金搭檔數(shù)”的定義分別判斷即可;(2)由已知設(shè)x,y為整數(shù),x,z為整數(shù),表示出,由s和t是一對“黃金搭檔數(shù)”,并且s與t的和能被7整除,綜合分析,列出方程組求解即可.【詳解】(1)解:∵∴87和12是一對“黃金搭檔數(shù)”;∵∴111與62,49數(shù)位不相同,∴62和49不是一對“黃金搭檔數(shù)”;故87和12是一對“黃金搭檔數(shù)”,62和49不是一對“黃金搭檔數(shù)”;(2)∵兩位數(shù)s和兩位數(shù)t的十位數(shù)字相同,∴設(shè)x,y為整數(shù),x,z為整數(shù),∴∵s和t是一對“黃金搭檔數(shù)”,∴是一個兩位數(shù),且各個數(shù)位上的數(shù)相同,又∵s與t的和能被7整除,∴,共有兩種情況:①,解得,∵x為整數(shù),∴不合題意,舍去;②,∵都是整數(shù),且∴解得或,故s為39或38.【點睛】本題考查三元一次方程組的整數(shù)解,解題關(guān)鍵是理解題目中的定義,根據(jù)已知條件列出方程組.24.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程組的解,然后代入A、B的坐標即可解答;(2)先求出OC的長,分點P在線段OB上和OB的延長線上兩種情況,分別利用三角形面積公式計算即可;(3)分兩種情況解答:①當點P在線段OB上時,連接PQ,過點M作PM⊥AC交AC的延長線于M,可得OP=2CQ,構(gòu)建方程解答即可;②當點P在BO的延長線上時,同理可解.【詳解】解:(1)解二元一次方程組,得:∴A(6,7),B(-8,0);(2)①當點P在線段OB上時,BP=4t,OP=8-4t,∴②當點P在OB延長線上時,綜上所述;(3)①當點P在線段OB上時,如圖:連接PQ,過點M作PM⊥AC交AC的延長線于M,又;②當在線段延長線上時同理可得:.綜上,滿足題意t的值為或4.【點睛】本題主要考查了三角形的面積、二元一次方程組等知識點,學會用分類討論的思想思考問題以及利用面積法解決線段之間的關(guān)系成為解答本題的關(guān)鍵.25.(1)7;(2)x≥7;(3)或x<3;(4)詳見解析.【分析】(1)先判斷a、b的大小,再根據(jù)相應(yīng)公式計算可得;(2)結(jié)合公式知3x﹣4≥2x+3,解之可得;(3)由題意可得或,分別求解可得;(4)先利用作差法判斷出2x2﹣2x+4>x2+4x﹣6,再根據(jù)公式計算(2x2﹣2x+4)※(x2+4x﹣6)即可.【詳解】(1)(﹣2)※3=2×(﹣2)﹣3=﹣7.故答案為:﹣7;(2)∵(3x﹣4)※(2x+3)=2(3x﹣4)+(2x+3),∴3x﹣4≥2x+3,解得:x≥7.故答案為:x≥7.(3)由題意可知分兩種情況討論:①,解得;②,解得;綜上:x的取值范圍為或x<3;(4)∵2x2﹣2x+4﹣(x2+4x﹣6)=x2﹣6x+10=(x﹣3)2+1>0∴2x2﹣2x+4>x2+4x﹣6,∴原式=2(2x2﹣2x+4)+(x2+4x﹣6)=4x2﹣4x+8+x2+4x﹣6=5x2+4;∴小明計算錯誤.【點睛】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟和弄清新定義是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.26.(1)P3,P4;(2)(-0.5,3)或(-0.5,-1);(3);(4)或【分析】(1)根據(jù)題意分析,即可得到答案;(2)結(jié)合題意,首先求得線段中點C坐標,再根據(jù)題意分析,即可得到答案;(3)過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,根據(jù)三角形和直角坐標系的性質(zhì),得;再根據(jù)直角坐標系和等腰直角三角形性質(zhì),得,,從而得到答案;(4)根據(jù)題意,得線段中點坐標;再結(jié)合題意列不等式并求解,即可得到答案.【詳解】(1)根據(jù)題意,點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為P3(﹣1,﹣2),P4(﹣,4)故答案為:P3,P4;(2)∵A(﹣2,1),B(1,1)∴線段中點C坐標為:,即∵點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2∴當或,即當或時,|AQ-BQ|=0,為最小值故答案為:(-0.5,3)或(-0.5,-1);(3)如圖,過點A作軸,過點C作軸,交于點D,過點A作,交y軸于點,過點C作,交y軸于點,∵點A(﹣2,1),C(﹣4,3)∴,,∴∴,,即,∴故答案為:;(4)∵點D(m,0),E(m+4,0)∴線段中點坐標為根據(jù)題意,得:當時,;當時,;∴或.【點睛】本題考查了直角坐標系、一元一次不等式知識;解題的關(guān)鍵是熟練掌握直角坐標系、一元一次不等式、坐標的性質(zhì),從而完成求解.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025陜西水務(wù)發(fā)展集團所屬企業(yè)社會招聘筆試考試參考試題及答案解析
- 2025年中職(建筑工程)建筑工程施工組織試題及答案
- 2025年中職汽車美容與裝潢(汽車美容基礎(chǔ))試題及答案
- 2025年大學(金融學)國際金融期末測試題及答案
- 2025年大學本科(新能源發(fā)電工程技術(shù))新能源項目設(shè)計綜合測試題及答案
- 寵物繁殖場合同2025
- 2025年西安鳳城醫(yī)院招聘(27人)考試筆試備考試題及答案解析
- 2025福建廈門清大海峽私募基金管理有限公司招聘1人筆試考試參考試題及答案解析
- 2025黑龍江哈爾濱工業(yè)大學機電工程學院精密超精密加工研究團隊招聘筆試考試備考題庫及答案解析
- 2024年江蘇省(175所)馬克思主義基本原理概論期末考試題及答案1套
- 2025山東日照五蓮縣城市社區(qū)專職工作者招聘8人考試題庫必考題
- 部隊手榴彈使用課件
- 課堂觀察與評價的基本方法課件
- 私募基金內(nèi)部人員交易管理制度模版
- 針對低層次學生的高考英語復(fù)習提分有效策略 高三英語復(fù)習備考講座
- (完整)《走遍德國》配套練習答案
- 考研準考證模板word
- 周練習15- 牛津譯林版八年級英語上冊
- 電力電纜基礎(chǔ)知識課件
- 代理記賬申請表
- 模型五:數(shù)列中的存在、恒成立問題(解析版)
評論
0/150
提交評論