綜合解析京改版數(shù)學9年級上冊期中試卷含答案詳解(典型題)_第1頁
綜合解析京改版數(shù)學9年級上冊期中試卷含答案詳解(典型題)_第2頁
綜合解析京改版數(shù)學9年級上冊期中試卷含答案詳解(典型題)_第3頁
綜合解析京改版數(shù)學9年級上冊期中試卷含答案詳解(典型題)_第4頁
綜合解析京改版數(shù)學9年級上冊期中試卷含答案詳解(典型題)_第5頁
已閱讀5頁,還剩34頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

京改版數(shù)學9年級上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對邊,則()A. B. C. D.2、二次函數(shù)的圖像如圖所示,現(xiàn)有以下結論:(1):(2);(3),(4);(5);其中正確的結論有(

)A.2個 B.3個 C.4個 D.5個.3、二次函數(shù)的頂點坐標為,圖象如圖所示,有下列四個結論:①;②;③④,其中結論正確的個數(shù)為(

)A.個 B.個 C.個 D.個4、將拋物線C1:y=(x-3)2+2向左平移3個單位長度,得到拋物線C2,拋物線C2與拋物線C3關于x軸對稱,則拋物線C3的解析式為().A.y=x2-2 B.y=-x2+2 C.y=x2+2 D.y=-x2-25、關于二次函數(shù)的最大值或最小值,下列說法正確的是()A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值66、由二次函數(shù),可知(

)A.其圖象的開口向下 B.其圖象的對稱軸為直線x=-3C.其最小值為1 D.當x<3時,y隨x的增大而增大二、多選題(7小題,每小題2分,共計14分)1、對于二次函數(shù),下列說法不正確的是(

)A.圖像開口向下B.圖像的對稱軸是直線C.函數(shù)最大值為0D.隨的增大而增大2、如圖,△ABC中,D在AB上,E在AC上,下列條件中,不能判定DE∥BC的是(

).A. B.C. D.3、二次函數(shù)(,,為常數(shù),)的部分圖象如圖所示,圖象頂點的坐標為,與軸的一個交點在點和點之間,給出的四個結論中正確的有(

)A. B.C. D.時,方程有解4、如圖,□ABCD中,E是AD延長線上一點,BE交AC于點F,交DC于點G,則下列結論中正確的是()A.△ABE∽△DGE B.△CGB∽△DGEC.△BCF∽△EAF D.△ACD∽△GCF5、下列各組圖形中相似的是(

)A.各有一個角是45°的兩個等腰三角形B.各有一個角是60°的兩個等腰三角形C.各有一個角是105°的兩個等腰三角形D.兩個等腰直角三角形6、已知兩個直角三角形的三邊長分別為3,4,m和6,8,n,且這兩個直角三角形不相似,則m+n的值為(

).A.5+2B.15C.10+D.15+37、具備下列各組條件的兩個三角形中,一定相似的是(

)A.有一個角是40°的兩個等腰三角形 B.兩個等腰直角三角形C.有一個角為100°的兩個等腰三角形 D.兩個等邊三角形第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、拋物線的圖像與軸交于、兩點,若的坐標為,則點的坐標為________.2、小亮同學在探究一元二次方程的近似解時,填好了下面的表格:根據(jù)以上信息請你確定方程的一個解的范圍是________.3、如圖,點C在線段上,且,分別以、為邊在線段的同側作正方形、,連接、,則_________.4、如圖,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直線互相垂直,的值為___.5、已知二次函數(shù)與x軸有兩個交點,把當k取最小整數(shù)時的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,若新圖象與直線有三個不同的公共點,則m的值為______.6、如圖,在矩形中,,垂足為點.若,,則的長為______.7、如圖,矩形ABCD中,點E,F(xiàn)分別在AD,BC上,且AE=DE,BC=3BF,連接EF,將矩形ABCD沿EF折疊,點A恰好落在BC邊上的點G處,則cos∠EGF的值為_____.四、解答題(6小題,每小題10分,共計60分)1、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當直線l與這個新圖象有且只有一個公共點時,d=;(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.2、在平面直角坐標系中,拋物線交x軸于點,,過點B的直線交拋物線于點C.(1)求該拋物線的函數(shù)表達式;(2)若點P是直線BC下方拋物線上的一個動點(P不與點B,C重合),求面積的最大值;(3)若點M在拋物線上,將線段OM繞點O旋轉90°,得到線段ON,是否存在點M,使點N恰好落在直線BC上?若存在,請直接寫出點M的坐標;若不存在,請說明理由.3、如圖,在平面直角坐標系中,O為坐標原點,點A坐標為(3,0),四邊形OABC為平行四邊形,反比例函數(shù)y=(x>0)的圖象經過點C,與邊AB交于點D,若OC=2,tan∠AOC=1.(1)求反比例函數(shù)解析式;(2)點P(a,0)是x軸上一動點,求|PC-PD|最大時a的值;(3)連接CA,在反比例函數(shù)圖象上是否存在點M,平面內是否存在點N,使得四邊形CAMN為矩形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.4、我區(qū)中小學生廣播操比賽中,無人機對此次比賽的全過程進行了航拍,如圖,某一時刻,無人機剛好飛至小琪頭頂上方,而站在離小琪35米遠的小珺仰望無人機,仰角為36°,已知小珺的眼睛離地面的距離AB為1.63m,那么此時無人機離地面大約有多高?(結果精確到0.1m)(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)5、解方程與計算(1)

(2)計算:.6、某校九年級數(shù)學興趣小組的活動課題是“測量物體高度”.小組成員小明與小紅分別采用不同的方案測量同一個底面為圓形的古塔高度,以下是他們研究報告的部分記錄內容:課題:測量古塔的高度小明的研究報告小紅的研究報告圖示測量方案與測量數(shù)據(jù)用距離地面高度為1.6m的測角器測出古塔頂端的仰角為35°,再用皮尺測得測角器所在位置與古塔底部邊緣的最短距離為30m.在點A用距離地面高度為1.6m的測角器測出古塔頂端的仰角為17°,然后沿AD方向走58.8m到達點B,測出古塔頂端的仰角為45°.參考數(shù)據(jù)sin35°≈0.57,cos35°≈0.82,tan35°≈0.70sin17°≈0.29,cos17°≈0.96,tan17°≈0.30,計算古塔高度(結果精確到0.1m)30×tan35°+1.6≈22.6(m)(1)寫出小紅研究報告中“計算古塔高度”的解答過程;(2)數(shù)學老師說小紅的結果比較準確,而小明的結果與古塔的實際高度偏差較大.請你針對小明的測量方案分析測量發(fā)生偏差的原因.-參考答案-一、單選題1、C【解析】【分析】根據(jù)Rt△ABC中,cos

B,tan

B,sin

A的定義,進行判斷.【詳解】∵Rt△ABC中,sinA=,cosA=,sin

B=,tanB=,∴選項C正確,選項A、B、D錯誤,故選C.【考點】本題考查了銳角三角函數(shù)的定義.關鍵是熟練掌握銳角三角函數(shù)的定義及其變形.2、C【解析】【分析】由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】解:(1)∵函數(shù)開口向下,∴a<0,∵對稱軸在y軸的右邊,∴,∴b>0,故命題正確;(2)∵a<0,b>0,c>0,∴abc<0,故命題正確;(3)∵當x=-1時,y<0,∴a-b+c<0,故命題錯誤;(4)∵當x=1時,y>0,∴a+b+c>0,故命題正確;(5)∵拋物線與x軸于兩個交點,∴b2-4ac>0,故命題正確;故選C.【考點】本題考查了二次函數(shù)圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數(shù)與方程之間的轉換,根的判別式的熟練運用.3、A【解析】【分析】根據(jù)二次函數(shù)的性質和已知條件,對每一項逐一進行判斷即可.【詳解】解:由圖像可知a<0,c>0,∵對稱軸在正半軸,∴>0,∴b>0,∴,故①正確;當x=2時,y>0,故,故③正確;函數(shù)解析式為:y=a(x-1)2+2=ax2-2ax+a+2假設成立,結合解析式則有a+2<,解得a<,故②,④正確;故選:A.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關系,結合圖象,運用所學知識是解題關鍵.4、D【解析】【分析】根據(jù)拋物線C1的解析式得到頂點坐標,利用二次函數(shù)平移的規(guī)律:左加右減,上加下減,并根據(jù)平移前后二次項的系數(shù)不變可得拋物線C2的頂點坐標,再根據(jù)關于x軸對稱的兩條拋物線的頂點橫坐標相等,縱坐標互為相反數(shù),二次項系數(shù)互為相反數(shù)可得到拋物線C3所對應的解析式.【詳解】解:∵拋物線C1:y=(x-3)2+2,其頂點坐標為(3,2)∵向左平移3個單位長度,得到拋物線C2∴拋物線C2的頂點坐標為(0,2)∵拋物線C2與拋物線C3關于x軸對稱∴拋物線C3的橫坐標不變,縱坐標互為相反數(shù),二次項系數(shù)互為相反數(shù)∴拋物線C3的頂點坐標為(0,-2),二次項系數(shù)為-1∴拋物線C3的解析式為y=-x2-2故選:D.【考點】本題主要考查了二次函數(shù)圖象的平移、對稱問題,熟練掌握平移的規(guī)律以及關于x軸對稱的兩條拋物線的頂點的橫坐標相等,縱坐標互為相反數(shù),二次項系數(shù)互為相反數(shù)是解題的關鍵.5、D【解析】【分析】根據(jù)二次函數(shù)的解析式,得到a的值為2,圖象開口向上,函數(shù)有最小值,根據(jù)定點坐標(4,6),即可得出函數(shù)的最小值.【詳解】解:∵在二次函數(shù)中,a=2>0,頂點坐標為(4,6),∴函數(shù)有最小值為6.故選:D.【考點】本題主要考查了二次函數(shù)的最值問題,關鍵是根據(jù)二次函數(shù)的解析式確定a的符號和根據(jù)頂點坐標求出最值.6、C【解析】【分析】根據(jù)二次函數(shù)的性質,直接根據(jù)的值得出開口方向,再利用頂點坐標的對稱軸和增減性,分別分析即可.【詳解】解:由二次函數(shù),可知:.,其圖象的開口向上,故此選項錯誤;.其圖象的對稱軸為直線,故此選項錯誤;.其最小值為1,故此選項正確;.當時,隨的增大而減小,故此選項錯誤.故選:.【考點】此題主要考查了二次函數(shù)的性質,同學們應根據(jù)題意熟練地應用二次函數(shù)性質,這是中考中考查重點知識.二、多選題1、ACD【解析】【分析】根據(jù)題目中的函數(shù)解析式,可以判斷各個選項中的說法是否正確.【詳解】解:二次函數(shù),a=2>0,∴該函數(shù)的圖象開口向上,故選項A錯誤,圖象的對稱軸是直線x=1,故選項B正確,函數(shù)的最小值是y=0,故選項C錯誤,當x>1時隨的增大而增大,故選項D錯誤,故選:A,C,D.【考點】本題考查二次函數(shù)的性質、二次函數(shù)的最值,解答本題的關鍵是明確題意,利用二次函數(shù)的性質解答.2、BCD【解析】【分析】利用各選項給定的條件,結合再證明,可得,逐一分析各選項,從而可得答案.【詳解】解:A、而則故A不符合題意;B、與不一定相似,則與不一定相等,不一定平行,故B符合題意;C、,而而不一定相等,故不一定平行,故C符合題意;D、與不一定相似,則與不一定相等,不一定平行,故D符合題意;故選:BCD.【考點】本題考查的是相似三角形的判定與性質,平行線的判定,掌握兩邊對應成比例且夾角相等的兩個三角形相似是解題的關鍵.3、BCD【解析】【分析】根據(jù)拋物線與軸有兩個交點,可知,即可判斷A選項;根據(jù)時,,即可判斷B選項;根據(jù)對稱軸,即可判斷C選項;D.根據(jù)拋物線的頂點坐標為,函數(shù)有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側,與軸的交點在軸的負半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標為,∴(為任意實數(shù)),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數(shù)的性質、二次函數(shù)圖像等知識點,掌握二次函數(shù)的性質與解析式的關系是解答本題的關鍵.4、ABC【解析】【分析】本題中可利用平行四邊形ABCD中兩對邊平行的特殊條件來進行求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠EDG=∠EAB,∵∠E=∠E,∴△ABE∽△DGE,故選項A正確;∵AE∥BC,∴∠EDC=∠BCG,∠E=∠CBG,∴△CGB∽△DGE,故選項B正確;∵AE∥BC,∴∠E=∠FBC,∠EAF=∠BCF,∴△BCF∽△EAF,故選項C正確;無法證得△ACD∽△GCF,故選:ABC.【考點】本題考查了相似三角形的判定定理,平行四邊形的性質,正確的識別圖形是解題的關鍵.5、BCD【解析】【分析】根據(jù)相似三角形的判定方法和等腰三角形的性質進行解答即可得.【詳解】解:A、沒有指明這個的角是頂角還是底角,則無法判定其相似,選項說法錯誤,不符合題意;B、有一個角為的等腰三角形是等邊三角形,根據(jù)三組對應邊的比相等的兩個三角形相似判定這兩個三角形相似,選項說法正確,符合題意;C、已知一個角為的等腰三角形,我們可以判定其為頂角,頂角相等且兩條腰對應成比例則這兩個三角形相似,選項說法正確,符合題意;D、兩個等腰直角三角形,可以根據(jù)兩組對應邊的比相等且相應的夾角相等的兩個三角形相似來判定這兩個三角形相似,選項說法正確,符合題意;故選BCD.【考點】本題考查了相似三角形,解題的根據(jù)是掌握相似三角形的判定和等腰三角形的性質.6、AC【解析】【分析】根據(jù)相似三角形的性質、分情況計算即可.【詳解】解:當3,4為直角邊,6,8也為直角邊時,此時兩三角形相似;當三邊分別為3,4,,和6,8,2,此時兩三角形相似;當3,4為直角邊時,m=5;則8為另一三角形的斜邊,其直角邊為:n==2,故m+n=5+2;當6,8為直角邊,n=10;則4為另一三角形的斜邊,其直角邊為:m==,故m+n=10+;綜上所述:m+n的值為5+2或10+,故選:A、C.【考點】本題主要考查了勾股定理以及相似三角形的性質,在直角三角形中對未知邊是直角邊還是斜邊進行不同情況的討論是解題的關鍵.7、BCD【解析】【分析】根據(jù)相似三角形的判定方法一一判斷即可.【詳解】A.有一個角是40°的兩個等腰三角形,當40°的角為等腰三角形的底角,當40°的角為等腰三角形頂角,兩個三角形內角分別為40°、40°、100°和40°、70°、70°,則兩三角形不相似,故選項A不合題意B.等腰直角三角形的內角均為45°,45°,90°,根據(jù)三角形相似判定方法等腰直角三角形有兩組角對應相等,兩個三角形相似,一定相似,故選項B符合題意;C.∵100°>90°,∴100°的角只能是等腰三角形的頂角,另兩個角分別為40°,40°,根據(jù)三角形相似判定定理,有兩組角對應相等的三角形相似,故選項C符合題意;D.∵等邊三角形的內角都是60°,根據(jù)三角形相似判定定理,兩個等邊三角形有兩個角對應相等,兩個三角形相似,故選項D符合題意.故選:BCD.【考點】考查相似三角形的判定方法,掌握相似三角形判定的4種方法是解題的關鍵.三、填空題1、【解析】【分析】用二次函數(shù)的圖象與x軸的交點關于對稱軸對稱解答即可.【詳解】解:∵拋物線的解析式y(tǒng)=a(x-2)2+c,∴拋物線的對稱軸為直線x=2,∵拋物線y=a(x-2)2+c與x軸交于A、B兩點,∴點A和點B關于直線x=2對稱,∵點A的坐標為(1,0),∴點B的坐標為(3,0),故答案為(3,0).【考點】本題主要考查了拋物線與x軸的交點,解題的關鍵是求出拋物線的對稱軸方程為直線x=2.2、【解析】【分析】觀察表格可知,隨x的值逐漸增大,ax2+bx+c的值在3.24~3.25之間由負到正,故可判斷ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.【詳解】根據(jù)表格可知,ax2+bx+c=0時,對應的x的值在3.24<x<3.25之間.故答案為3.24<x<3.25.【考點】本題考查了一元二次方程的知識點,解題的關鍵是根據(jù)表格求出一元二次方程的近似根.3、【解析】【分析】設BC=a,則AC=2a,然后利用正方形的性質求得CE、CG的長、∠GCD=ECD=45°,進而說明△ECG為直角三角形,最后運用正切的定義即可解答.【詳解】解:設BC=a,則AC=2a∵正方形∴EC=,∠ECD=同理:CG=,∠GCD=

∴.故答案為.【考點】本題考查了正方形的性質和正切的定義,根據(jù)正方形的性質說明△ECG是直角三角形是解答本題的關鍵.4、【解析】【分析】延長AD交GB于點M,交BC的延長線于點H,則AHBH,由線段垂直平分線的性質得出GA=GB,GD=GC,由SAS證明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先證出∠AGB=∠DGC,由,證出△AGB△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出,即可得出的值.【詳解】解:延長AD交GB于點M,交BC的延長線于點H,如圖所示:則AHBH,GE是AB的垂直平分線,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考點】本題是相似三角形綜合題目,考查了線段垂直平分線的性質、全等三角形的判定與性質、相似三角形的判定與性質、銳角三角函數(shù)等知識,本題難度較大,綜合性強,解題的關鍵是通過作輔助線綜合運用全等三角形和相似三角形的性質.5、1或【解析】【分析】先運用根的判別式求得k的取值范圍,進而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點坐標,畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個交點,可以有兩種情況:①過交點(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(一1,0),與相切時,根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個交點,∴,解得,當k取最小整數(shù)時,,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,所以新圖象的解析式為(或)

:①因為為的,所以它的圖象從左到右是上升的,當它與新圖象有3個交點時它一定過,把代入得所以,②與相切時,圖象有三個交點,,,解得.故答案為:1或.【考點】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點,掌握分類討論和直線與拋物線相切時判別式等于零是解答本題的關鍵.6、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長,根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點】本題考查矩形的性質、正弦、勾股定理等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.7、【解析】【分析】連接AF,由矩形的性質得AD∥BC,AD=BC,由平行線的性質得∠AEF=∠GFE,由折疊的性質得∠AFE=∠GFE,AF=FG,推出∠AEF=∠AFE,則AF=AE,AE=FG,得出四邊形AFGE是菱形,則AF∥EG,得出∠EGF=∠AFB,設BF=2x,則AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB==,即可得出結果.【詳解】解:連接AF,如圖所示:∵四邊形ABCD為矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折疊的性質可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四邊形AFGE是菱形,∴AF∥EG,∴∠EGF=∠AFB,設BF=2x,則AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB===,∴cos∠EGF=,故答案為:.【考點】此題考查的是矩形與折疊問題、菱形的判定及性質、等腰三角形的性質和銳角三角函數(shù),掌握矩形的性質、折疊的性質、菱形的判定及性質、等角對等邊和等角的銳角三角函數(shù)值相等是解決此題的關鍵.四、解答題1、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<。【解析】【分析】(1)令-x2-2x+3=x+d求解即可;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標,然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標進行數(shù)形結合畫圖找出d的取值范圍即可.【詳解】解:(1)當直線l經過點A(-3,0)時,d=;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),直線l:y=x+d與拋物線c:y=x2+2x-3(-3<x<1)相切于點P,則點P的橫坐標恰好是方程x+d=x2+2x-3,即2x2+3x-2d-6=0(-3<x<1)的兩個相等實數(shù)根,解△=9+8(2d+6)=0得d=,∴點P的坐標為().①當直線l經過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;②當直線l經過點P()時,直線l與這個新圖象有且只有三個公共點,解得d=;

∴綜合①、②得:d=或d=(3)①由平移直線l可得:直線l從經過點A(-3,0)開始向下平移到直線l經過點P()的過程中,直線l與這個新圖象有且只有兩個公共點,可得<d<②直線l從經過點P()繼續(xù)向下平移的過程中,直線l與這個新圖象有且只有兩個公共點,可得d<;∴綜合①、②得:<d<或d<;(4)如圖:當直線l經過點B(1,0)時,直線l與這個新圖象有且只有三個公共點,解得d=;當直線l繼續(xù)向下平移的過程中經過點P(),直線l與這個新圖象有且只有三個公共點,可得d=;∴要使直線l與這個新圖象有四個公共點則d的取值范圍是<d<.【考點】本題考查的是二次函數(shù)綜合運用,關鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關系.2、(1);(2);(3)存在,或或或【解析】【分析】(1)將A、B兩點的坐標分別代入拋物線的解析式中,得關于a、b的二元一次方程組,解方程組即可求得a、b,從而可求得拋物線的函數(shù)解析式;(2)過點P作軸,交x軸于點D,交BC于點E,作于點F,連接PB,PC,則有,設,則可得E點坐標,從而可分別求得PE、DE,從而求得PE,解由二次函數(shù)與一次函數(shù)組成的方程組,可求得點C的坐標,進而求得△PBC的面積關于m的函數(shù),求出函數(shù)的最值即可;(3)設點M的坐標為(p,q),分別求出直線OM、ON的解析式,再求得ON與直線的交點N的坐標,根據(jù)OM=ON,即可求出p與q的值,從而求得點M的坐標.【詳解】(1)將點,代入中,得:解得∴該拋物線表達式為.(2)過點P作軸,交x軸于點D,交BC于點E,作于點F,連接PB,PC,如圖.設點,則點.∵點P、E均位于直線的下方∴P、E兩點的縱坐標均為負∴,∴∵點C的坐標為方程組的一個解∴解這個方程組,得,∵點B坐標為∴點C的橫坐標為∴∴.(其中)∵∴這個二次函數(shù)有最大值,且當時,的最大值為.(3)存在設M(p,q),其中,且p≠0,則直線OM的解析式為:由于ON⊥OM,則直線ON的解析式為:解方程組,得,即點N的坐標為∴∵,且OM=ON∴∴即或把代入兩式中并整理,得:或解方程得:,,,(舍去)當時,;當時,;當時,故點M的坐標分別為:或或當p=0時,則q=-3,即M(0,-3),而,且OM⊥OB即此時點M也滿足題意綜上所述,滿足題意的點M的坐標為或或或.【考點】本題是二次函數(shù)的壓軸題,也是中考??碱}型,它考查了待定系數(shù)法求二次數(shù)解析式,二次函數(shù)的圖象,求二次函數(shù)的最值,平面直角坐標系中圖象旋轉問題,解方程組,勾股定理等知識,運算量較大,這對學生的運算能力提出了更高的要求;求三角形面積時用到圖形的割補方法,這是在平面直角坐標系中求圖象面積常用的方法.3、(1)(2)|PC?PD|最大時a的值為6(3)存在,點M的坐標為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點C坐標,最后用待定系數(shù)法即可得出結論;(2)先求出OC解析式,由平行四邊形的性質可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數(shù)法可求AB解析式,求出點D的坐標,再根據(jù)三角形關系可得出當點P,C,D三點共線時,|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據(jù)直角頂點需要分兩種情況,畫出圖形分別求解即可.(1)解:如圖1,過點C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點C在反比例函數(shù)圖象上,∴k=2×2=4,∴反比例函數(shù)解析式為y=;(2)解:∵點C(2,2),點O(0,0),∴OC解析式為:y=x,∵四邊形OABC是平行四邊形,點A坐標為(3,0),∴BC=OA=3,BC∥OA,AB∥OC,∴點B(5,2),∴設AB解析式為:y=x+b,∴2=5+b,∴b=-3,∴AB解析式為:y=x-3,聯(lián)立方程組可得:,∴或(舍去),∴點D(4,1);在△PCD中,|PC-PD|<CD,則當點P,C,D三點共線時,|PC-PD|=CD,此時,|PC-PD|取得最大值,由(1)知C(2,2),D(4,1),設直線CD的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論