版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中考數(shù)學總復習《圓》試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,,cm,cm.是邊上的一個動點,連接,過點作于,連接,在點變化的過程中,線段的最小值是(
)A.1 B. C.2 D.2、如圖,AB是半圓的直徑,點D是弧AC的中點,∠ABC=50°,則∠BCD=()A.105° B.110° C.115° D.120°3、如圖,圓內接正六邊形的邊長為4,以其各邊為直徑作半圓,則圖中陰影部分的面積為(
)A. B. C. D.4、如圖所示,MN為⊙O的弦,∠N=52°,則∠MON的度數(shù)為(
)A.38° B.52° C.76° D.104°5、如圖,AB是⊙O的直徑,點E是AB上一點,過點E作CD⊥AB,交⊙O于點C,D,以下結論正確的是()A.若⊙O的半徑是2,點E是OB的中點,則CD=B.若CD=,則⊙O的半徑是1C.若∠CAB=30°,則四邊形OCBD是菱形D.若四邊形OCBD是平行四邊形,則∠CAB=60°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,正方形ABCD,邊長為4,點P和點Q在正方形的邊上運動,且PQ=4,若點P從點B出發(fā)沿B→C→D→A的路線向點A運動,到點A停止運動;點Q從點A出發(fā),沿A→B→C→D的路線向點D運動,到達點D停止運動.它們同時出發(fā),且運動速度相同,則在運動過程中PQ的中點O所經過的路徑長為_____.2、如圖,四邊形ABCD為⊙O的內接正四邊形,△AEF為⊙O的內接正三角形,連接DF.若DF恰好是同圓的一個內接正多邊形的一邊,則這個正多邊形的邊數(shù)為_____.3、如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點,點P是以C(﹣1,0)為圓心,1為半徑的圓上一點,連接PA,PB,則△PAB面積的最大值為_____.4、如圖所示是一個幾何體的三視圖,如果一只螞蟻從這個幾何體的點出發(fā),沿表面爬到的中點處,則最短路線長為__________.5、如圖,是的外接圓的直徑,若,則______.三、解答題(5小題,每小題10分,共計50分)1、如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF和AD.(1)求證:EF是⊙O的切線;(2)若⊙O的半徑為2,∠EAC=60°,求AD的長.2、如圖,在中,,的中點.(1)求證:三點在以為圓心的圓上;(2)若,求證:四點在以為圓心的圓上.3、如圖,AD、BC是⊙O的兩條弦,且AB=CD,求證:AD=BC.4、如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為E,如果AB=10,CD=8,求線段AE的長.5、如圖,正方形ABCD的外接圓為⊙O,點P在劣弧CD上(不與C點重合).(1)求∠BPC的度數(shù);(2)若⊙O的半徑為8,求正方形ABCD的邊長.-參考答案-一、單選題1、A【解析】【分析】由∠AEC=90°知,點E在以AC為直徑的⊙M的上(不含點C、可含點N),從而得BE最短時,即為連接BM與⊙M的交點(圖中點E′點),BE長度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點、可含點,最短時,即為連接與的交點(圖中點點),在中,,,則.,長度的最小值,故選:.【考點】本題主要考查了勾股定理,圓周角定理,三角形的三邊關系等知識點,難度偏大,解題時,注意輔助線的作法.2、C【解析】【分析】連接AC,然后根據(jù)圓內接四邊形的性質,可以得到∠ADC的度數(shù),再根據(jù)點D是弧AC的中點,可以得到∠DCA的度數(shù),直徑所對的圓周角是90°,從而可以求得∠BCD的度數(shù).【詳解】解:連接AC,∵∠ABC=50°,四邊形ABCD是圓內接四邊形,∴∠ADC=130°,∵點D是弧AC的中點,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直徑,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故選:C.【考點】本題考查圓周角定理、圓心角、弧、弦的關系,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.3、A【解析】【分析】正六邊形的面積加上六個小半圓的面積,再減去中間大圓的面積即可得到結果.【詳解】解:正六邊形的面積為:,六個小半圓的面積為:,中間大圓的面積為:,所以陰影部分的面積為:,故選:A.【考點】本題考查了正多邊形與圓,圓的面積的計算,正六邊形的面積的計算,正確的識別圖形是解題的關鍵.4、C【解析】【分析】根據(jù)半徑相等得到OM=ON,則∠M=∠N=52°,然后根據(jù)三角形內角和定理計算∠MON的度數(shù).【詳解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故選C.【考點】本題考查了圓的認識:掌握與圓有關的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).5、C【解析】【分析】根據(jù)垂徑定理,解直角三角形知識,一一求解判斷即可.【詳解】解:A、∵OC=OB=2,∵點E是OB的中點,∴OE=1,∵CD⊥AB,∴∠CEO=90°,CD=2CE,∴,∴,本選項錯誤不符合題意;B、根據(jù),缺少條件,無法得出半徑是1,本選項錯誤,不符合題意;C、∵∠A=30°,∴∠COB=60°,∵OC=OB,∴△COB是等邊三角形,∴BC=OC,∵CD⊥AB,∴CE=DE,∴BC=BD,∴OC=OD=BC=BD,∴四邊形OCBD是菱形;故本選項正確本選項符合題意.D、∵四邊形OCBD是平行四邊形,OC=OD,所以四邊形OCBD是菱形∴OC=BC,∵OC=OB,∴OC=OB=BC,∴∠BOC=60°,∴,故本選項錯誤不符合題意..故選:C.【考點】本題考查了圓周角定理,垂徑定理,菱形的判定和性質,等邊三角形的判定和性質,正確的理解題意是解題的關鍵.二、填空題1、【解析】【分析】【詳解】解:畫出點O運動的軌跡,如圖虛線部分,則點P從B到A的運動過程中,PQ的中點O所經過的路線長等于3π,故答案為:3π.2、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計算⊙O的內接正四邊形與內接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設這個正多邊形為n邊形,∵AD,AF分別為⊙O的內接正四邊形與內接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內接一個正十二邊形的一邊.故答案為:12.【考點】本題考查了正多邊形與圓:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓;熟練掌握正多邊形的有關概念.3、32【解析】【分析】如圖,作CH⊥AB于H交⊙O于E、F,求出A、B的坐標,根據(jù)勾股定理求出AB,再由S△ABC=AB?CH=OB?AC求出點C到AB的距離CH,即可求出圓C上點到AB的最大距離,根據(jù)面積公式求出即可.【詳解】如圖,作CH⊥AB于H交⊙O于E、F,∵直線y=﹣x+6與x軸、y軸分別交于A、B兩點,∴當y=0時,可得0=﹣x+6,解得:x=8,∴A(8,0),當x=0時,得y=6,∴B(0,6),∴OA=8,OB=6,∴=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=AB?CH=OB?AC,∴,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距離為6.4,∴△PAB面積的最大值=×10×6.4=32,故答案為32.【考點】本題考查了三角形的面積,勾股定理、三角形等面積法求高、求圓心到直線的距離等知識,解此題的關鍵是求出圓上的點到直線AB的最大距離.4、【解析】【分析】將圓錐的側面展開,設頂點為B',連接BB',AE.線段AC與BB'的交點為F,線段BF是最短路程.【詳解】如圖將圓錐側面展開,得到扇形ABB′,則線段BF為所求的最短路程.設∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E為弧BB′中點,∴∠AFB=90°,∠BAF=60°,∴BF=AB?sin∠BAF=6×=,∴最短路線長為.故答案為:.【考點】本題考查了平面展開?最短路徑問題,解題時注意把立體圖形轉化為平面圖形的思維.5、【解析】【分析】連接BD,如圖,根據(jù)圓周角定理得到∠ABD=90°,則利用互余計算出∠D=50°,然后再利用圓周角定理得到∠ACB的度數(shù).【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°-∠BAD=90°-40°=50°,∴∠ACB=∠D=50°.故答案為:50.【考點】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.三、解答題1、(1)見解析;(2)AD=.【解析】【分析】(1)連接FO,可根據(jù)三角形中位線的性質可判斷易證OF∥AB,然后根據(jù)直徑所對的圓周角是直角,可得CE⊥AE,進而知OF⊥CE,然后根據(jù)垂徑定理可得∠FEC=∠FCE,∠OEC=∠OCE,再通過Rt△ABC可知∠OEC+∠FEC=90°,因此可證FE為⊙O的切線;(2)在Rt△OCD中和Rt△ACD中,分別利用勾股定理分別求出CD,AD的長即可.【詳解】(1)證明:連接CE,如圖所示:∵AC為⊙O的直徑,∴∠AEC=90°.∴∠BEC=90°,∵點F為BC的中點,∴EF=BF=CF,∴∠FEC=∠FCE,∵OE=OC,∴∠OEC=∠OCE,∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°,∴EF是⊙O的切線.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等邊三角形.∴∠AOE=60°,∴∠COD=∠AOE=60°,∵⊙O的半徑為2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠COD=60°,∴∠ODC=30°,∴OD=2OC=4,∴CD=.在Rt△ACD中,∵∠ACD=90°,AC=4,CD=.∴AD==.【考點】本題主要考查直角三角形、全等三角形的判定與性質以及與圓有關的位置關系.2、(1)見解析;(2)見解析【解析】【分析】(1)連結OC,利用直角三角形斜邊中線等于斜邊一半可得OA=OB=OC,所以A,B,C三點在以O為圓心,OA長為半徑的圓上;(2)連結OD,可得OA=OB=OC=OD,所以A,B,C,D四點在以O為圓心,OA長為半徑的圓上.【詳解】解:(1)連結OC,在中,,的中點,∴OC=OA=OB,∴三點在以為圓心的圓上;(2)連結OD,∵,∴OA=OB=OC=OD,∴四點在以為圓心的圓上.【考點】此題考查了圓的定義:到定點的距離等于定長的點都在同一個圓上,直角三角形斜邊中線的性質.證明幾個點共圓,只需要證明這幾個點到某個定點的距離相等即可.3、證明見解析.【解析】【分析】根據(jù)AB=CD,得出,進而得出,即可解答.【詳解】證明:∵AB,CD是⊙O的兩條弦,且AB=CD,∴,∴,∴,∴AD=BC.【考點】此題考查圓心角、弧、弦的關系,關鍵是利用三者的關系解答.4、2【解析】【分析】連接OC,利用直徑AB=10,則OC=OA=5,再由CD⊥AB,根據(jù)垂徑定理得CE=DE=CD=4,然后利用勾股定理計算出OE,再利用AE=OA-OE進行計算即可.【詳解】連接OC,如圖,∵AB是⊙O的直徑,AB=10,∴OC=OA=5,∵CD⊥AB,∴CE=DE=CD=×8=4,在Rt△OCE中,OC=5,CE=4,∴OE==3,∴AE=OA﹣OE=5﹣3=2.【考點】本題考查了垂徑定理,掌握垂徑定理及勾股定理是關鍵.5、(1)45°;(2)8【解析】【詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- PFC系列項目可行性分析報告范文
- 互聯(lián)網(wǎng)公司技術崗位常見問題及答案參考
- 教育行業(yè)災備份工程師面試題集
- 六角車床建設項目可行性分析報告(總投資10000萬元)
- 內部控制面試題庫含答案
- 法律職業(yè)資格認證考試題庫
- 人工智能技術面試題集
- 書寫課件教學課件
- 深度解析(2026)《GBT 18759.8-2017機械電氣設備 開放式數(shù)控系統(tǒng) 第8部分:試驗與驗收》
- 化工廢料項目可行性分析報告范文(總投資13000萬元)
- 公司反貪腐類培訓課件
- 寢室內務規(guī)范講解
- 部隊地雷使用課件
- 航空材料基礎培訓課件
- 2025至2030軍工自動化行業(yè)市場深度研究及發(fā)展前景投資可行性分析報告
- 老舊小區(qū)消防系統(tǒng)升級改造方案
- 起重機械應急救援預案演練記錄
- 新專業(yè)申報答辯課件
- 護理事業(yè)十五五發(fā)展規(guī)劃(2026-2030年)
- DBJ50-T-200-2024 建筑樁基礎技術標準
- 教科版科學小學五年級上冊《機械擺鐘》教學設計
評論
0/150
提交評論