版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數學上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖,點A與點B關于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數()的圖象經過點A,E.若△ACE的面積為6,則的值為(
)A. B. C. D.2、點P是△ABC中AB邊上一點(不與A、B重合),過P作直線截△ABC使得截得的三角形與△ABC相似,這樣的直線最多作()A.2條 B.3條 C.4條 D.5條3、下列說法中不正確的是()A.任意兩個等邊三角形相似 B.有一個銳角是40°的兩個直角三角形相似C.有一個角是30°的兩個等腰三角形相似 D.任意兩個正方形相似4、已知關于x的一元二次方程x2﹣3x+1=0有兩個不相等的實數根x1,x2,則x12+x22的值是()A.﹣7 B.7 C.2 D.﹣25、如圖,點A是反比例函數圖象上的一點,過點A作軸,垂足為點C,D為AC的中點,若的面積為1,則k的值為()A. B. C.3 D.46、下列方程中,一定是關于x的一元二次方程的是(
)A. B.C. D.二、多選題(6小題,每小題2分,共計12分)1、下列命題中不是真命題的是(
)A.兩邊相等的平行四邊形是菱形B.一組對邊平行一組對邊相等的四邊形是平行四邊形C.兩條對角線相等的平行四邊形是矩形D.對角線互相垂直且相等的四邊形是正方形2、平行四邊形ABCD的對角線相交于點O,分別添加下列條件使得四邊形ABCD是矩形的條件有(
)是菱形的條件有(
)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO3、如圖,將等邊△ABC繞點C順時針旋轉120°得到△EDC,連接AD,BD.則下列結論中正確的是()A.AC=AD B.BD⊥AC C.四邊形ACED是菱形 D.∠ADC=60°4、如圖,正方形ABCD中,CE平分∠ACB,點F在邊AD上,且AF=BE.連接BF交CE于點G,交AC于點M,點P是線段CE上的動點,點N是線段CM上的動點,連接PM,PN.下列四個結論一定成立的是(
)A.CE⊥BF B.BE=AM C.AE+FM=AB D.PM+PN≥AC5、如圖,在正方形ABCD中,E是BC的中點,F是CD上一點,且,下列結論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(
)A.① B.② C.③ D.④6、(多選)如圖,正方形ABCD的對角線AC,BD相交于D于點O,點P為線段AC上一點,連接BP,過點P作交AD于點E,連接BE,若,,下列說法正確的有(
)A. B. C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、在平面直角坐標系中,一次函數與反比例函數的圖象交于,兩點,則的值是____________.2、如果關于x的方程有兩個相等的正實數根,那么m的值為____________.3、如圖,點A是反比例函數y=(x>0)圖象上的一點,AB垂直于x軸,垂足為B,△OAB的面積為6.若點P(a,4)也在此函數的圖象上,則a=_____.4、已知關于的方程的一個根是,則____.5、制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是_____元.6、在平面直角坐標系中,點O為坐標原點,點A的坐標為(3,4),點B的坐標為(7,0),D,E分別是線段AO,AB上的點,以DE所在直線為對稱軸,把△ADE作軸對稱變換得△A′DE,點A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長為________.(結果保留2個有效數字)7、已知,則的值為_____.8、設分別為一元二次方程的兩個實數根,則____.四、解答題(6小題,每小題10分,共計60分)1、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=02、如圖1,正方形ABCD中,AB=5,點E為BC邊上一動點,連接AE,以AE為邊,在線段AE右側作正方形,連接CF、DF.設.(當點E與點B重合時,x的值為0),.小明根據學習函數的經驗,對函數隨自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整:(1)通過取點、畫圖、測量、觀察、計算,得到了x與y1、y2的幾組對應值;x0123455.004.123.614.125.0001.412.834.245.657.07(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數值所對應的點,并畫出函數y1,y2的圖象;(3)結合函數圖象2,解決問題:當△CDF為等腰三角形時,BE的長度約為cm.3、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當E,F兩點中有一點到達終點時,另一點也停止運動.當△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.4、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數量關系,并說明理由;(3)拓展應用:在(2)的條件下,連接,若,,求的長.5、關于x的方程有實數根,且m為正整數,求m的值及此時方程的根.6、如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.(1)如圖①,當時,求的值;(2)如圖②,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.
-參考答案-一、單選題1、C【解析】【分析】過A作,連接OC、OE,根據點A與點B關于原點對稱,∠ACB=90°,AC平分∠BAD得出,從而得出三角形AEC的面積與三角形AOE的面積相等,設,根據E是AD的中點得出得出三角形OAE的面積等于四邊形AFGE的面積建立等量關系求解.【詳解】解:過A作,連接OC,連接OE:∵點A與點B關于原點對稱,∠ACB=90°∴又∵AC平分∠BAD∴∴∴設,根據E是AD的中點得出:∴解得:故答案選:C.【考點】本題考查反比例函數與幾何綜合,有一定的難度.將三角形AEC的面積轉化與三角形AOE的面積相等是解題關鍵.2、C【解析】【分析】根據相似三角形的判定方法分析,即可做出判斷.【詳解】滿足條件的直線有4條,如圖所示:如圖1,過P作PE∥AC,則有△BPE∽△BAC;如圖2,過P作PE∥BC,則有△APE∽△ABC;如圖3,過P作∠AEP=∠B,又∠A=∠A,則有△APE∽△ACB;如圖4,過P作∠BEP=∠A,又∠B=∠B,則有△BEP∽△BAC,故選:C.【考點】本題考查了相似三角形的判定,解答的關鍵是對相似三角形的判定方法的理解與靈活運用.3、C【解析】【分析】直接利用相似圖形的性質分別分析得出答案.【詳解】A.任意兩個等邊三角形相似,說法正確;B.有一個銳角是40°的兩個直角三角形相似,說法正確;C.有一個角是30°的兩個等腰三角形相似,30°有可能是頂角或底角,故說法錯誤;D.任意兩個正方形相似,說法正確.故選:C.【考點】本題主要考查了圖形的相似,正確把握相似圖形的判定方法是解題關鍵.4、B【解析】【分析】根據一元二次方程的根與系數的關系可得x1+x2=3,x1x2=1,再把代數式x12+x22化為,再整體代入求值即可.【詳解】解:根據根與系數的關系得x1+x2=3,x1x2=1,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×1=7.故選:B.【考點】本題考查的是一元二次方程的根與系數的關系,熟練的利用根與系數的關系求解代數式的值是解本題的關鍵.5、D【解析】【分析】先設出點A的坐標,進而表示出點D的坐標,利用△ADO的面積建立方程求出,即可得出結論.【詳解】點A的坐標為(m,2n),∴,∵D為AC的中點,∴D(m,n),∵AC⊥軸,△ADO的面積為1,∴,∴,∴,故選:D.【考點】本題考查反比例函數系數k的幾何意義、反比例函數圖象上點的坐標特征,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用反比例函數的性質解答.6、B【解析】【分析】根據一元二次方程的概念(只含一個未知數,并且含有未知數的項的次數最高為2次的整式方程是一元二次方程)逐一進行判斷即可得.【詳解】解:A、,當時,不是一元二次方程,故不符合題意;B、,是一元二次方程,符合題意;C、,不是整式方程,故不符合題意;D、,整理得:,不是一元二次方程,故不符合題意;故選:B.【考點】本題考查了一元二次方程的定義,熟練掌握其定義是解題的關鍵.二、多選題1、ABD【解析】【分析】利用平行四邊形、矩形、菱形及正方形的判定方法分別判斷即可.【詳解】A選項:有一組鄰邊相等的平行四邊形是菱形,故原命題錯誤,是假命題,符合題意;B選項:一組對邊平行且相等的四邊形是平行四邊形,故原命題錯誤,是假命題,符合題意;C選項:兩條對角線相等的平行四邊形是矩形,故原命題正確,是真命題,不符合題意;D選項:兩條對角線互相垂直且相等的平行四邊形是正方形,故原命題錯誤,是假命題,符合題意.故選:ABD.【考點】考查了平行四邊形、菱形、矩形和正方形的判定,解題關鍵是熟練掌握特殊四邊形的判定方法.2、AEBCD【解析】【分析】因為四邊形ABCD是平行四邊形,要成為矩形加上一個角為直角或對角線相等即可;要使其成為菱形,加上一組鄰邊相等或對角線垂直均可.【詳解】A選項:∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個角是直角的平行四邊形是矩形)B選項:∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對角線互相垂直的平行四邊形是菱形)C選項:∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項:如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項:∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點】考查了菱形和矩形的判定,解題關鍵是掌握平行四邊形的性質和菱形、矩形的判定方法.3、ABCD【解析】【分析】由旋轉和等邊三角形性質得到,,,可推導得到是等邊三角形,再由等邊三角形性質判斷A、D是否正確;根據菱形的判定得到四邊形是菱形,從而判斷C是否正確,結合前兩問可推導得到四邊形是菱形,從而得到B是否正確【詳解】證明:∵將等邊繞點C順時針旋轉得到
∴,∴,∴∴是等邊三角形∴,∵∴四邊形是菱形又∵,且是等邊三角形∴∴四邊形是菱形∴綜上所述:選項A、B、C、D全部正確故選:ABCD【考點】本題考查等邊三角形的性質,菱形的判定和性質,根據相關定理內容解題是切入點.4、ABD【解析】【分析】由SAS可證△BAF≌△CBE,進而可證EG⊥BG,即CE⊥BF,故A正確;根據ASA可證△BCG≌△MCG,知∠CBG=∠CMG,因為∠CBG=∠AFM,∠AMF=∠CMG,可得∠AFM=∠AMF,即AM=AF,可證BE=AM,故B正確;因AB=AE+BE=AE+AM,故C不正確;當PN⊥MC時,PM+PN=BP+PN=BN最短,此時BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據正方形的性質知,BN==BD=AC,因此PM+PN≥AC,故D正確.【詳解】解:∵四邊形ABCD是正方形∴AB=BC,∠BAF=∠CBE=90°在△BAF和△CBE中∴△BAF≌△CBE(SAS)∴∠BAF=∠ECB∵∠CBE=90°∴∠BEC+∠BCE=90°∴∠BEC+∠FBA=90°∴∠BGE=180°-(∠BEC+∠FBA)=90°∴EG⊥BG,即CE⊥BF,故A正確;∵CE平分∠ACB∴∠BCE=∠MCG∵CE⊥BF∴∠MGC=∠BGC=90°在△BCG和△MCG中∴△BCG≌△MCG(ASA)∴∠CBG=∠CMG∵正方形ABCD∴AD∥BC∴∠CBG=∠AFM∵∠AMF=∠CMG∴∠AFM=∠AMF∴AM=AF∵AF=BE∴BE=AM,故B正確;∵AB=AE+BE,BE=AM∴AE+AM=AB,故C不正確;連接BP,如圖,∵△BCG≌△MVG∴BG=GM∵CE⊥BF∴CG垂直平分BM∴MP=BP當PN⊥MC時,PM+PN=BP+PN=BN最短,此時BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據正方形的性質知,BN==BD=AC∴PM+PN≥AC,故D正確綜上所述,一定成立的是ABD,故選:ABD.【考點】本題考查了全等三角形的判定與性質,正方形的性質,線段的垂直平分線,解題的關鍵是熟練掌握全等三角形的判定與性質.5、BC【解析】【分析】根據相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質逐一判斷選項即可.【詳解】解:在正方形中,是的中點,是上一點,且,,..,.,,,..,.②③正確.故選:BC.【考點】本題考查了相似三角形的判定與性質,解題的關鍵是掌握判定定理有①有兩個對應角相等的三角形相似,②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.6、ABC【解析】【分析】由∠DBP+∠BPO=90°,∠APE+∠BPO=90°,可判斷結論A正確;過P作PK⊥AD于K,PT⊥AB于T,證明△PKE≌△PTB(ASA),可判定結論B正確;延長KP交BC于M,可得△CPM是等腰直角三角形,CP=PM=CP=1,即可得AE=AD-DK-KE=4,判斷結論C正確;在Rt△BPM中,BP=,可得S△PBE=BP?PE=13,可判斷結論D錯誤.【詳解】解:∵四邊形ABCD是正方形,∴∠BOP=90°,∴∠DBP+∠BPO=90°,∵PE⊥PB,∴∠APE+∠BPO=90°,∴∠APE=∠DBP,故結論A正確;過P作PK⊥AD于K,PT⊥AB于T,如圖:∵四邊形ABCD是正方形,∴∠DAC=∠BAC,又PK⊥AD,PT⊥AB∴PK=PT,∵∠KPT=90°=∠EPB,∴∠KPE=∠BPT,∵∠PKE=90°=∠PTB,∴△PKE≌△PTB(ASA),∴PE=PB,故結論B正確;延長KP交BC于M,如圖:∵四邊形ABCD是正方形,∴AD∥BC,∠ACB=45°,∴PM⊥BC,∴△CPM是等腰直角三角形,∴CP=PM=CP=1,∴DK=CM=1,KE=PM=1,∴AE=AD-DK-KE=4,故結論C正確;∵BC=6,CM=1,∴BM=5,在Rt△BPM中,BP==,∴PE=BP=,∴S△PBE=BP?PE=13,故結論D錯誤,故選:ABC.【考點】本題考查正方形的性質及應用,涉及全等三角形的判定與性質,等腰直角三角形的性質及應用等知識,解題的關鍵是作輔助線,證明△PKE≌△PTB.三、填空題1、0【解析】【分析】根據正比例函數和反比例函數的圖像關于原點對稱,則交點也關于原點對稱,即可求得【詳解】一次函數與反比例函數的圖象交于,兩點,一次函數與反比例函數的圖象關于原點對稱,故答案為:0【考點】本題考查了正比例函數和反比例函數圖像的性質,掌握以上性質是解題的關鍵.2、4【解析】【分析】根據一元二次方程根的判別式即可求得或,再根據方程有兩個相等的正實數根,可知兩根之和為正數,據此即可解答.【詳解】解:關于x的方程有兩個相等的實數根解得或又關于x的方程有兩個相等的正實數根兩根之和為正數,即,解得故故答案為:4【考點】本題考查了一元二次方程根的判別式及根與系數的關系,熟練掌握和運用一元二次方程根的判別式及根與系數的關系是解決本題的關鍵解.3、3【解析】【分析】根據反比例函數的幾何意義,可得,從而得到,再將點P(a,4)代入解析式,即可求解.【詳解】解:∵點A是反比例函數y=(x>0)圖象上的一點,AB垂直于x軸,∴,∵△OAB的面積為6.∴,即,∴反比例函數的解析式為,∵點P(a,4)也在此函數的圖象上,∴,解得:.故答案為:3【考點】本題主要考查了反比例函數的幾何意義,反比例函數的圖象和性質,熟練掌握反比例函數的幾何意義,反比例函數的圖象和性質,利用數形結合思想解答是解題的關鍵.4、【解析】【分析】根據一元二次方程解的定義將x=1代入即可求出a的值.【詳解】解:∵關于的方程的一個根是∴解得:a=-1故答案為:.【考點】此題考查的是根據一元二次方程的解,求參數的值,掌握一元二次方程解的定義是解決此題的關鍵.5、1080【解析】【分析】直接利用相似多邊形的性質進而得出答案.【詳解】∵將此廣告牌的四邊都擴大為原來的3倍,∴面積擴大為原來的9倍,∴擴大后長方形廣告牌的成本為:120×9=1080(元).故答案為:1080.【考點】此題考查相似多邊形的性質,相似多邊形的面積的比等于相似比的平方.6、2.0或3.3【解析】【分析】由點A的坐標為(3,4),點B的坐標為(7,0),可得OA=5,OB=7,AB=4,然后分別由△OA′D∽△OAB與△OA′D∽△OBA,根據相似三角形的對應邊成比例,即可得答案.【詳解】∵點A的坐標為(3,4),點B的坐標為(7,0),∴OA==5,OB=7,AB==4,若△OA′D∽△OAB,則,設AD=x,則OD=5﹣x,A′D=x,即,解得:x≈2.2,∴,∴OA′=2.0;若△OA′D∽△OBA,則,同理:可得:OA′≈3.3.故答案為2.0或3.3.【考點】此題考查了相似三角形的性質與折疊的知識.注意數形結合與方程思想的應用,小心別漏解是解題關鍵.7、1【解析】【分析】由比例的性質,設,則,,,然后代入計算,即可得到答案.【詳解】解:根據題意,設,∴,,,∴,故答案為:1.【考點】本題考查了比例的性質,解題的關鍵是掌握比例的性質進行解題.8、2020【解析】【分析】根據一元二次方程的解結合根與系數的關系即可得出m2+2m=2022,m+n=?2,將其代入m2+3m+n=m2+2m+(m+n)中即可求出結論.【詳解】解:∵m,n分別為一元二次方程x2+2x?2022=0的兩個實數根,∴m2+2m=2022,m+n=?2,∴m2+3m+n=m2+2m+(m+n)=2022+(?2)=2020.故答案為:2020.【考點】本題考查了根與系數的關系以及一元二次方程的解,根據一元二次方程的解結合根與系數的關系得出m2+2m=2022,m+n=?2是解題的關鍵.四、解答題1、(1)x1=7,x2=-9;(2)x1=2+,x2=2-;(3)x1=-1+,x2=-1-;(4)x1=-2,x2=4【解析】【分析】(1)方程移項后,運用直接開平方法求解即可;(2)根據配方法解一元二次方程的步驟依次計算即可;(3)根據配方法解一元二次方程的步驟依次計算即可;(4)根據因式分解法求解即可.【詳解】解:(1)(x+1)2=64x+1=±8∴x1=7,x2=-9(2)x2﹣4x=-1x2﹣4x+4=-1+4(x-2)2=3x-2=±∴x1=2+,x2=2-(3)x2+2x=2x2+2x+1=2+1(x+1)2=3x+1=±∴x1=-1+,x2=-1-(4)(x+2)(x-4)=0x+2=0或x-4=0∴x1=-2,x2=4【考點】本題考查一元二次方程的求解,選擇適合的方法是解題關鍵.2、(1)見解析;(2)見解析;(3)2.59.【解析】【分析】(1)畫圖、測量可得;(2)依據表中的數據,描點、連線即可得;(3)由題意得出△CDF是等腰三角形時BE的長度即為y1與y2交點的橫坐標,據此可得答案.【詳解】(1)補全表格如下:x012345y15.04.123.613.614.125.00y201.412.834.245.657.07(2)函數圖象如下:(3)結合函數圖象2,解決問題:當△CDF為等腰三角形時,BE的長度約為2.5906,故答案為2.59.【考點】本題是四邊形的綜合問題,解題的關鍵是掌握函數思想的運用及函數圖象的畫法、數形結合思想的運用.3、(6-)s【解析】【分析】設點E運動的時間是x秒.根據題意可得方程,解方程即可得到結論.【詳解】解:設點E運動的時間是xs.根據題意可得22+(2x)2=(3-2x)2+x2,解這個方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴兩點運動了1.5s后停止運動.∴x=6-.答:當△AEF是以AF為底邊的等腰三角形時,點E運動的時間是(6-)s.【考點】本題考查了一元二次方程的應用,考查了矩形的性質,等腰三角形的判定及性質,勾股定理的運用.4、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2中,作GM⊥AB于M.然后證明△ABE∽△GMF即可解決問題;(3)如圖3中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質求出PM,CM即可解決問題.【詳解】(1)如圖(1),∵四邊形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.∵四邊形ABCD是正方形,AE⊥DQ,AE⊥GF,∴DG∥QF,DQ∥GF,∴四邊形DQFG是平行四邊形,∴DQ=GF,∴FG=AE;(2).理由:如圖(2)中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年社區(qū)自給自足農業(yè)項目可行性研究報告
- 2025年區(qū)域飲用水安全保障項目可行性研究報告
- 個人應收協(xié)議書
- 中介買房協(xié)議書
- 產品出樣協(xié)議書
- 人教版九年級下冊英語月考題庫帶完整參考答案
- 云南省2024云南騰沖市文化和旅游局所屬事業(yè)單位校園招聘緊缺人才(2人)筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 會計崗位面試要點及專業(yè)知識考核
- 面試題集中化控股質量總經理崗位
- 保密技術工程師崗位面試題及答案
- 《t檢驗統(tǒng)計》課件
- 醫(yī)學檢驗考試復習資料
- DBJ50T-建筑分布式光伏電站消防技術標準
- 某工程消防系統(tǒng)施工組織設計
- 軍事訓練傷的防治知識
- 應急管理理論與實踐 課件 第3、4章 應急預案編制與全面應急準備、應急響應啟動與科學現場指揮
- 2025年常德職業(yè)技術學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- KCA數據庫試題庫
- 【MOOC】新媒體文化十二講-暨南大學 中國大學慕課MOOC答案
- 倉庫主管個人年終總結
- 2024年初中七年級英語上冊單元寫作范文(新人教版)
評論
0/150
提交評論