中考數(shù)學總復習《 圓》??键c試卷及答案詳解(考點梳理)_第1頁
中考數(shù)學總復習《 圓》常考點試卷及答案詳解(考點梳理)_第2頁
中考數(shù)學總復習《 圓》??键c試卷及答案詳解(考點梳理)_第3頁
中考數(shù)學總復習《 圓》??键c試卷及答案詳解(考點梳理)_第4頁
中考數(shù)學總復習《 圓》??键c試卷及答案詳解(考點梳理)_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

中考數(shù)學總復習《圓》??键c試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,PA,PB是⊙O的切線,A,B是切點,點C為⊙O上一點,若∠ACB=70°,則∠P的度數(shù)為(

)A.70° B.50° C.20° D.40°2、如圖,圓內(nèi)接正六邊形的邊長為4,以其各邊為直徑作半圓,則圖中陰影部分的面積為(

)A. B. C. D.3、已知點在半徑為8的外,則(

)A. B. C. D.4、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°5、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在中,點是的中點,連接交弦于點,若,,則的長是______.2、如圖,在中,∠ABC=90°,∠A=58°,AC=18,點D為邊AC的中點.以點B為圓心,BD為半徑畫圓弧,交邊BC于點E,則圖中陰影部分圖形的面積為______.a(chǎn)3、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.4、如圖,是的直徑,弦于點,且,則的半徑為__________.5、如圖,四邊形ABCD為⊙O的內(nèi)接正四邊形,△AEF為⊙O的內(nèi)接正三角形,連接DF.若DF恰好是同圓的一個內(nèi)接正多邊形的一邊,則這個正多邊形的邊數(shù)為_____.三、解答題(5小題,每小題10分,共計50分)1、(1)課本再現(xiàn):在中,是所對的圓心角,是所對的圓周角,我們在數(shù)學課上探索兩者之間的關系時,要根據(jù)圓心O與的位置關系進行分類.圖1是其中一種情況,請你在圖2和圖3中畫出其它兩種情況的圖形,并從三種位置關系中任選一種情況證明;(2)知識應用:如圖4,若的半徑為2,分別與相切于點A,B,,求的長.2、如圖所示,,.(1)已知,求以為直徑的半圓面積及扇形的面積;(2)若的長度未知,已知陰影甲的面積為16平方厘米,能否求陰影乙的面積?若能,請直接寫出結果;若不能,請說明理由.3、如圖,在△ABC中,以AB為直徑的⊙O交AC于點M,弦交AB于點E,且ME=3,AE=4,AM=5.(1)求證:BC是⊙O的切線;(2)求⊙O的直徑AB的長度.4、如圖,在中,∠=45°,,以為直徑的⊙與邊交于點.(1)判斷直線與⊙的位置關系,并說明理由;(2)若,求圖中陰影部分的面積.5、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.-參考答案-一、單選題1、D【解析】【分析】首先連接OA,OB,由PA,PB為⊙O的切線,根據(jù)切線的性質(zhì),即可得∠OAP=∠OBP=90°,又由圓周角定理,可求得∠AOB的度數(shù),繼而可求得答案.【詳解】解:連接OA,OB,∵PA,PB為⊙O的切線,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB=2∠P=140°,∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.故選:D.【考點】此題考查了切線的性質(zhì)與圓周角定理,注意掌握輔助線的作法和數(shù)形結合思想的應用.2、A【解析】【分析】正六邊形的面積加上六個小半圓的面積,再減去中間大圓的面積即可得到結果.【詳解】解:正六邊形的面積為:,六個小半圓的面積為:,中間大圓的面積為:,所以陰影部分的面積為:,故選:A.【考點】本題考查了正多邊形與圓,圓的面積的計算,正六邊形的面積的計算,正確的識別圖形是解題的關鍵.3、A【解析】【分析】根據(jù)點P與⊙O的位置關系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關系,關鍵是要牢記判斷點與圓的位置關系的方法.4、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應用,主要考查學生的推理能力,題目比較典型,難度適中.5、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).二、填空題1、8.【解析】【分析】連結OA,OB,點是的中點,半徑交弦于點,根據(jù)垂徑定理可得OC⊥AB,AD=BD,由,,求半徑OC=5,OA=5,在Rt△OAD中,由勾股定理得DA=即可,【詳解】解:連結OA,OB,∵點是的中點,半徑交弦于點,∴OC⊥AB,AD=BD,∵,,∴OC=OD+CD=3+2=5,∴OA=OC=5,在Rt△OAD中,由勾股定理得DA=,∴AB=2AD=2×4=8,故答案為8.【考點】本題考查垂徑定理的推論,勾股定理,線段中點定義,掌握垂徑定理的推論,平分弧的直徑垂直平分這條弧所對的弦,勾股定理,線段中點定義是解題關鍵.2、【解析】【分析】先根據(jù)直角三角形斜邊上的中線性質(zhì)得到BD=CD=9,則∠DBC=∠C=22°,然后根據(jù)扇形的面積公式計算.【詳解】解:∵∠ABC=90°,點D為邊AC的中點,∴BD=CD=AC=9,∴∠DBC=∠C,∵∠C=90°-∠A=90°-58°=32°,∴∠DBE=32°,∴圖中陰影部分圖形的面積=.故答案為:π.【考點】本題考查了扇形面積的計算:設圓心角是n°,圓的半徑為R的扇形面積為S,則S扇形=或S扇形=lR(其中l(wèi)為扇形的弧長).也考查了直角三角形斜邊上的中線性質(zhì).3、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關鍵在于熟練掌握其知識點.4、【解析】【分析】根據(jù)垂徑定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可.【詳解】解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE-OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32+(6-OD)2,解得:OD=,∴⊙O的半徑為:,故答案為:.【考點】本題考查了垂徑定理、勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關鍵.5、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計算⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設這個正多邊形為n邊形,∵AD,AF分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內(nèi)接一個正十二邊形的一邊.故答案為:12.【考點】本題考查了正多邊形與圓:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓;熟練掌握正多邊形的有關概念.三、解答題1、(1)見解析;(2)【解析】【分析】(1)①如圖2,當點O在∠ACB的內(nèi)部,作直徑,根據(jù)三角形外角的性質(zhì)和等腰三角形的性質(zhì)可得結論;②如圖3,當O在∠ACB的外部時,作直徑CD,同理可理結論;(2)如圖4,先根據(jù)(1)中的結論可得∠AOB=120°,由切線的性質(zhì)可得∠OAP=∠OBP=90°,可得∠OPA=30°,從而得PA的長.【詳解】解:(1)①如圖2,連接CO,并延長CO交⊙O于點D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD+∠BOD=2∠ACO+2∠BCO=2∠ACB,∴∠ACB=∠AOB;如圖3,連接CO,并延長CO交⊙O于點D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD-∠BOD=2∠ACO-2∠BCO=2∠ACB,∴∠ACB=∠AOB;(2)如圖4,連接OA,OB,OP,∵∠C=60°,∴∠AOB=2∠C=120°,∵PA,PB分別與⊙O相切于點A,B,∴∠OAP=∠OBP=90°,∠APO=∠BPO=∠APB=(180°-120°)=30°,∵OA=2,∴OP=2OA=4,∴PA=【考點】本題考查了切線長定理,圓周角定理等知識,掌握證明圓周角定理的方法是解本題的關鍵.2、(1)半圓面積為157,扇形的面積為157;(2)能,16平方厘米.【解析】【分析】(1)我們運用圓的面積公式求出半圓的面積,用扇形的面積公式求出扇形的面積即可.(2)我們借助第一題的解答結果,運用等量代換的方法可以求出陰影乙的面積.【詳解】(1)因為OB=20,所以S半圓=×(20÷2)2,=×100,≈157;S扇形BOC=××R2,=××202,≈157;答:半圓面積是157,扇形COB的面積是157.(2)能求陰影乙的面積:因為,∠AOB=90°,∠COB=45°,所以半圓的直徑OB,△BOD的底是OB,高是半圓的半徑即OB,所以S半圓=×OB×OB,=OB2;S扇形BOC=××OB2,=××OB2;=OB2;所以S半圓=S扇形BOC,S半圓?①=S扇形?①,所以S甲=S乙,因為S甲=16平方厘米,所以S乙=16平方厘米,答:陰影乙的面積是16平方厘米.【考點】此題主要考查圓及扇形的面積,解題的關鍵是熟知公式的運用.3、(1)見解析(2)【解析】【分析】(1)根據(jù)勾股定理的逆定理得到∠AEM=90°,由于,根據(jù)平行線的性質(zhì)得∠ABC=90°,然后根據(jù)切線的判定定理即可得到BC是⊙O的切線;(2)連接OM,設⊙O的半徑是r,在Rt△OEM中,根據(jù)勾股定理得到r2=32+(4?r)2,解方程即可得到⊙O的半徑,即可得出答案.【詳解】(1)證明:∵在△AME中,ME=3,AE=4,AM=5,∴AM2=ME2+AE2,∴△AME是直角三角形,∴∠AEM=90°,又∵,∴∠ABC=∠AEM=90°,∴AB⊥BC,∵AB為直徑,∴BC是⊙O的切線;(2)解:連接OM,如圖,設⊙O的半徑是r,在Rt△OEM中,OE=AE?OA=4?r,ME=3,OM=r,∵OM2=ME2+OE2,∴r2=32+(4?r)2,解得:r=,∴AB=2r=.【考點】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了勾股定理和勾股定理的逆定理.4、(1)證明見解析(2)【解析】【分析】(1)利用等腰三角形的性質(zhì)與三角形的內(nèi)角和定理證明從而可得結論;(2)如圖,記BC與的交點為M,連接OM,先證明再利用陰影部分的面積等于三角形ABC的面積減去三角形BOM的面積,減去扇形AOM的面積即可.(1)證明:∠=45°,,即在上,為的切線.(2)如圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論