版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,從⊙O外一點P引圓的兩條切線PA,PB,切點分別是A,B,若∠APB=60°,PA=5,則弦AB的長是()A. B. C.5 D.52、在圓內(nèi)接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°3、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.4、已知⊙O的半徑為4,,則點A在()A.⊙O內(nèi) B.⊙O上 C.⊙O外 D.無法確定5、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.6、下列圖形中,既是中心對稱圖形也是軸對稱圖形的是()A. B. C. D.7、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.8、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉(zhuǎn)60°,射線BD與射線CE交于點P,在這個旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、從,0,1,2這四個數(shù)中任取一個數(shù),作為關(guān)于x的方程中a的值,則該方程有實數(shù)根的概率為_________.2、如圖,在平行四邊形中,,,,以點為圓心,為半徑的圓弧交于點,連接,則圖中黑色陰影部分的面積為________.(結(jié)果保留)3、已知60°的圓心角所對的弧長是3.14厘米,則它所在圓的周長是______厘米.4、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點C逆時針旋轉(zhuǎn)60°,得到△MNC,那么BM=______________.5、在平面直角坐標系中,將點繞坐標原點順時針旋轉(zhuǎn)后得到點Q,則點Q的坐標是___________.6、一個不透明的袋子中放有3個紅球和5個白球,這些球除顏色外均相同,隨機從袋子中摸出一球,摸到紅球的概率為_____.7、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進行表演的民間戲劇.表演者在幕后操縱剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)三、解答題(7小題,每小題0分,共計0分)1、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?2、如圖1,點O為直線AB上一點,將兩個含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得邊OP在的內(nèi)部且平分,此時三角板OPQ旋轉(zhuǎn)的角度為______度;(2)三角板OPQ在繞點O按逆時針方向旋轉(zhuǎn)時,若OP在的內(nèi)部.試探究與之間滿足什么等量關(guān)系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點O以每秒2°的速度按順時針方向旋轉(zhuǎn),同時將三角板OPQ繞點O以每秒3°的速度按逆時針方向旋轉(zhuǎn),將射線OB繞點O以每秒5°的速度沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)后的射線OB記為OE,射線OC平分,射線OD平分,當射線OC、OD重合時,射線OE改為繞點O以原速按順時針方向旋轉(zhuǎn),在OC與OD第二次相遇前,當時,直接寫出旋轉(zhuǎn)時間t的值.3、某省高考采用“3+1+2”模式:“3”是指語文、數(shù)學(xué)、英語3科為必選科目,“1”是指在物理、歷史2科中任選1科,“2”是指在思想政治、化學(xué)、生物、地理4科中任選2科.(1)假定在“1”中選擇歷史,在“2”中已選擇地理,則選擇生物的概率是________;(2)求同時選擇物理、化學(xué)、生物的概率.4、如圖所示,是⊙的一條弦,,垂足為,交⊙于點,點在⊙上.()若,求的度數(shù).()若,,求的長.5、某商家銷售一批盲盒,每一個看上去無差別的盲盒內(nèi)含有A,B,C,D四種玩具中的一種,抽到玩具B的有關(guān)統(tǒng)計量如表所示:抽盲盒總數(shù)50010001500200025003000頻數(shù)130273414566695843頻率0.2600.2730.2760.2830.2780.281(1)估計從這批盲盒中任意抽取一個是玩具B的概率是;(結(jié)果保留小數(shù)點后兩位)(2)小明從分別裝有A,B,C,D四種玩具的四個盲盒中隨機抽取兩個,請利用畫樹狀圖或列表的方法,求抽到的兩個玩具恰為玩具A和玩具C的概率.6、如圖,在△ABC是⊙O的內(nèi)接三角形,∠B=45°,連接OC,過點A作AD∥OC,交BC的延長線于D.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為2,∠OCB=75°,求△ABC邊AB的長.7、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.-參考答案-一、單選題1、C【分析】先利用切線長定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點睛】本題考查了切線長定理以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應(yīng)用.2、C【分析】,,,進而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點睛】本題考查了圓內(nèi)接四邊形中對角互補.解題的關(guān)鍵在于根據(jù)角度之間的數(shù)量關(guān)系求解.3、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關(guān)鍵.4、C【分析】根據(jù)⊙O的半徑r=4,且點A到圓心O的距離d=5知d>r,據(jù)此可得答案.【詳解】解:∵⊙O的半徑r=4,且點A到圓心O的距離d=5,∴d>r,∴點A在⊙O外,故選:C.【點睛】本題主要考查點與圓的位置關(guān)系,點與圓的位置關(guān)系有3種.設(shè)⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r;②點P在圓上?d=r;③點P在圓內(nèi)?d<r.5、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關(guān)鍵.6、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意;D、是中心對稱圖形,不是軸對稱圖形,故此選項不符合題意.故選:A.【點睛】本題考查中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.7、D【詳解】解:.不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,解題的關(guān)鍵是掌握軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.8、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準確圖形是解題關(guān)鍵.二、填空題1、【分析】根據(jù)一元二次方程的定義,可得,根據(jù)一元二次方程的判別式的意義得到,可得,然后根據(jù)概率公式求解.【詳解】解:∵當且,一元二次方程有實數(shù)根∴且從,0,1,2這四個數(shù)中任取一個數(shù),符合條件的結(jié)果有所得方程有實數(shù)根的概率為故答案為:【點睛】本題考查了列舉法求概率,一元二次方程的定義,一元二次方程根的判別式,掌握以上知識是解題的關(guān)鍵.2、【分析】過點C作于點H,根據(jù)正弦定義解得CH的長,再由扇形面積公式、三角形的面積公式解題即可.【詳解】解:過點C作于點H,在平行四邊形中,平行四邊形的面積為:,圖中黑色陰影部分的面積為:,故答案為:.【點睛】本題考查平行四邊形的性質(zhì)、扇形面積等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.3、18.84【分析】先根據(jù)弧長公式求得πr,然后再運用圓的周長公式解答即可.【詳解】解:設(shè)圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長為(厘米),故答案為:.【點睛】本題主要考查了弧長公式、圓的周長公式等知識點,牢記弧長公式是解答本題的關(guān)鍵.4、【分析】設(shè)BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設(shè)BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點C逆時針旋轉(zhuǎn)60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵MF⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點睛】本題考查等腰三角形性質(zhì)、等邊三角形的性質(zhì)及判定,解題的關(guān)鍵是證明∠CDB=90°.5、【分析】繞坐標原點順時針旋轉(zhuǎn)即關(guān)于原點中心對稱,找到關(guān)于原點中心對稱的點的坐標即可,根據(jù)關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù),即可求解.【詳解】解:將點繞坐標原點順時針旋轉(zhuǎn)后得到點Q,則點Q的坐標是故答案為:【點睛】本題考查了求一個點關(guān)于原點中心對稱的點的坐標,掌握關(guān)于原點中心對稱的點的坐標特征是解題的關(guān)鍵.關(guān)于原點對稱的兩個點,橫坐標、縱坐標分別互為相反數(shù).6、【分析】讓紅球的個數(shù)除以球的總數(shù)即為摸到紅球的概率.【詳解】解:∵紅球的個數(shù)為3個,球的總數(shù)為3+5=8(個),∴摸到紅球的概率為,故答案為:.【點睛】本題考查了概率公式的應(yīng)用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.三、解答題1、(1)見解析(2)152cm2.【分析】(1)左視圖3列,每列小正方形數(shù)目分別為3,2,1;俯視圖有3列,每行小正方形數(shù)目分別為3,2,1,;(2)先數(shù)出各個面小正方形的個數(shù),再乘每個小正方形的面積可計算出表面積.(1)如圖所示:(2)(2×2)×(6×6+2)=4×38=152(cm2).故這個幾何體的表面積是152cm2.【點睛】本題考查作圖-三視圖.在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.本題畫幾何體的三視圖時應(yīng)注意小正方形的數(shù)目及位置.2、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據(jù)OP平分得到∠PON,然后求出∠BOP即可;(2)先根據(jù)題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉(zhuǎn)前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時間,再設(shè)在OC與OD第二次相遇前,當時,需要旋轉(zhuǎn)時間為t,再分OE在OC的左側(cè)和OE在OC的右側(cè)兩種情況解答即可.(1)解:∵OP平分∠MON∴∠PON=∠MON=45°∴三角板OPQ旋轉(zhuǎn)的角:∠BOP=∠PON+∠NOB=135°.故答案是135°(2)解:∠MOP-∠NOQ=30°,理由如下:∵∠MON=90°,∠POQ=60°∴∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,∴∠MOP-∠NOQ=90°-∠POQ-(60°-∠POQ)=30°.(3)解:∵射線OC平分,射線OD平分∴∠NOC=45°,∠POD=30°∴選擇前OC與OD的夾角為∠COD=∠NOC+∠NOP+∠POD=165°∴OC與OD第一次相遇的時間為165°÷(2°+3°)=33秒,此時OB旋轉(zhuǎn)的角度為33×5°=165°∴此時OC與OE的夾角165-(180-45-2×33)=96°OC與OD第二次相遇需要時間360°÷(3°+2°)=72秒設(shè)在OC與OD第二次相遇前,當時,需要旋轉(zhuǎn)時間為t①當OE在OC的左側(cè)時,有(5°-2°)t=96°-13°,解得:t=s②當OE在OC的右側(cè)時,有(5°-2°)t=96°+13°,解得:t=s然后,①②都是每隔360÷(5°-2°)=120秒,出現(xiàn)一次這種現(xiàn)象∵C、D第二次相遇需要時間72秒∴在OC與OD第二次相遇前,當時,、旋轉(zhuǎn)時間t的值為s或s.【點睛】本題主要考查了角平分線的定義、平角的定義、一元一次方程的應(yīng)用等知識點,靈活運用相關(guān)知識成為解答本題的關(guān)鍵.3、(1)(2)【分析】(1)直接根據(jù)概率公式即可得出答案;(2)根據(jù)題意畫出樹狀圖得出所有等可能的情況數(shù),找出符合條件的情況數(shù),然后根據(jù)概率公式即可得出答案.(1)解:在“2”中已選擇了地理,從剩下的化學(xué)、生物,思想品德三科中選一科,因此選擇生物的概率為.故答案為:;(2)解:用樹狀圖表示所有可能出現(xiàn)的結(jié)果如下:共有12種等可能的結(jié)果數(shù),其中選中“化學(xué)”“生物”的有2種,則.在“1”中選擇物理的概率,同時選擇物理、化學(xué)、生物的概率.故答案為:.【點睛】本題考查的是用列表法或樹狀圖法求概率,解題的關(guān)鍵是掌握列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.4、(1)26°;(2)8【分析】(1)欲求,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解;(2)利用垂徑定理可以得到,從而得到結(jié)論.【詳解】解:(1),,.(2)∵,,且,∴,∵,,.【點睛】此題考查了圓周角定理,同圓中等弧所對的圓周角相等,以及垂徑定理,熟練掌握垂徑定理得出是解題關(guān)鍵.5、(1)0.28;(2)【分析】(1)由表中數(shù)據(jù)可判斷頻率在0.28左右擺動,利用頻率估計概率可判斷任意抽取一個毛絨玩具是優(yōu)等品的概率為0.28;(2)先列表得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式求解可得.(1)解:從這批盲盒中任意抽取一個是玩具B的概率是0.28,故答案為0.28.(2)列表為:ABCDA--BACADABAB--CBDBCACBC--DCDADBDCD--由上表可知,從四種玩具的四個盲盒中隨機抽取兩個共有12種等可能結(jié)果,其中恰為玩具A和玩具C的結(jié)果有2種,所以恰為玩具A和玩具C的概率P=.【點睛】本題考查了利用頻率估計概率及用列表法或樹狀圖法求概率,大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 苗木提供協(xié)議書
- 藕種購銷合同范本
- 認慫協(xié)議書模板
- 試樣加工協(xié)議書
- 請業(yè)主發(fā)合同范本
- 待崗職業(yè)協(xié)議書
- 戶外寫生協(xié)議書
- 誤傷補償協(xié)議書
- 心理輔導(dǎo)協(xié)議書
- 帳篷借用協(xié)議書
- 2026富滇銀行公司招聘面試題及答案
- 2025年南京鐵道職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫附答案
- 2025年網(wǎng)絡(luò)維護管理人員工作總結(jié)例文(2篇)
- 城銀清算服務(wù)有限責(zé)任公司2026年校園招聘16人備考題庫附答案
- 2025年河南豫能控股股份有限公司及所管企業(yè)第二批社會招聘18人筆試歷年參考題庫附帶答案詳解
- 2025年《項目管理認證考試》知識考試題庫及答案解析
- 安徽消防筆試題及答案
- 書籍借閱營銷方案
- 生態(tài)冷鮮牛肉銷售創(chuàng)業(yè)策劃書范文
- 2025年高級煤礦綜采安裝拆除作業(yè)人員《理論知識》考試真題(含解析)
評論
0/150
提交評論