中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺試卷及參考答案詳解【培優(yōu)A卷】_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺試卷及參考答案詳解【培優(yōu)A卷】_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺試卷及參考答案詳解【培優(yōu)A卷】_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺試卷及參考答案詳解【培優(yōu)A卷】_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考前沖刺試卷及參考答案詳解【培優(yōu)A卷】_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》考前沖刺試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長是()A.6 B.3 C.2 D.2、如圖,一段公路的轉(zhuǎn)彎處是一段圓弧,則的展直長度為()A.3π B.6π C.9π D.12π3、如圖,在中,,cm,cm.是邊上的一個動點,連接,過點作于,連接,在點變化的過程中,線段的最小值是(

)A.1 B. C.2 D.4、丁丁和當(dāng)當(dāng)用半徑大小相同的圓形紙片分別剪成扇形(如圖)做圓錐形的帽子,請你判斷哪個小朋友做成的帽子更高一些()A.丁丁 B.當(dāng)當(dāng) C.一樣高 D.不確定5、如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A.6π﹣ B.6π﹣9 C.12π﹣ D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,矩形ABCD的對角線交于點O,以點A為圓心,AB的長為半徑畫弧,剛好過點O,以點D為圓心,DO的長為半徑畫弧,交AD于點E,若AC=2,則圖中陰影部分的面積為_____.(結(jié)果保留π)2、如圖所示的扇形中,,C為上一點,,連接,過C作的垂線交于點D,則圖中陰影部分的面積為_______.3、用反證法證明:“如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行”.第一步應(yīng)假設(shè):______.4、在⊙O中,若弦垂直平分半徑,則弦所對的圓周角等于_________°.5、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____三、解答題(5小題,每小題10分,共計50分)1、如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.(1)求證:CD是⊙O的切線;(2)若⊙O的半徑為3,CD=4,求BD的長.2、如圖,正方形ABCD的外接圓為⊙O,點P在劣弧CD上(不與C點重合).(1)求∠BPC的度數(shù);(2)若⊙O的半徑為8,求正方形ABCD的邊長.3、已知PA,PB分別與⊙O相切于點A,B,∠APB=80°,C為⊙O上一點.(1)如圖①,求∠ACB的大?。?2)如圖②,AE為⊙O的直徑,AE與BC相交于點D.若AB=AD,求∠EAC的大?。?、在平面直角坐標(biāo)系中,對于點,給出如下定義:當(dāng)點滿足時,稱點Q是點P的等和點.已知點.(1)在,,中,點P的等和點有______;(2)點A在直線上,若點P的等和點也是點A的等和點,求點A的坐標(biāo);(3)已知點和線段MN,對于所有滿足的點C,線段MN上總存在線段PC上每個點的等和點.若MN的最小值為5,直接寫出b的取值范圍.5、如圖,直線l:y=2x+1與拋物線C:y=2x2+bx+c相交于點A(0,m),B(n,7).(1)填空:m=,n=,拋物線的解析式為.(2)將直線l向下移a(a>0)個單位長度后,直線l與拋物線C仍有公共點,求a的取值范圍.(3)Q是拋物線上的一個動點,是否存在以AQ為直徑的圓與x軸相切于點P?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.-參考答案-一、單選題1、C【解析】【分析】如圖,過作于過作于先證明三點共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點共線,為等邊三角形,四邊形是矩形,故選:【考點】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識是解題的關(guān)鍵.2、B【解析】【詳解】分析:直接利用弧長公式計算得出答案.詳解:的展直長度為:=6π(m).故選B.點睛:此題主要考查了弧長計算,正確掌握弧長公式是解題關(guān)鍵.3、A【解析】【分析】由∠AEC=90°知,點E在以AC為直徑的⊙M的上(不含點C、可含點N),從而得BE最短時,即為連接BM與⊙M的交點(圖中點E′點),BE長度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點、可含點,最短時,即為連接與的交點(圖中點點),在中,,,則.,長度的最小值,故選:.【考點】本題主要考查了勾股定理,圓周角定理,三角形的三邊關(guān)系等知識點,難度偏大,解題時,注意輔助線的作法.4、B【解析】【分析】由圖形可知,丁丁扇形的弧長大于當(dāng)當(dāng)扇形的弧長,根據(jù)弧長與圓錐底面圓的周長相等,可得丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當(dāng)當(dāng)剪成扇形做圓錐形的帽子的底面半徑r,由扇形的半徑相等,即母線長相等R,設(shè)圓錐底面圓半徑為r,母線為R,圓錐的高為h,根據(jù)勾股定理由即,可得丁丁的h小于當(dāng)當(dāng)?shù)膆即可.【詳解】解:由圖形可知,丁丁扇形的弧長大于當(dāng)當(dāng)扇形的弧長,根據(jù)弧長與圓錐底面圓的周長相等,∴丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當(dāng)當(dāng)剪成扇形做圓錐形的帽子的底面半徑r,∵扇形的半徑相等,即母線長相等R,設(shè)圓錐底面圓半徑為r,母線為R,圓錐的高為h,,根據(jù)勾股定理由即,∴丁丁的h小于當(dāng)當(dāng)?shù)膆,∴由勾股定理可得當(dāng)當(dāng)做成的圓錐形的帽子更高一些.故選:B.【考點】本題考查扇形作圓錐帽子的應(yīng)用,利用圓錐的母線底面圓的半徑,和圓錐的高三者之間關(guān)系,根據(jù)勾股定理確定出當(dāng)當(dāng)?shù)拿弊痈呤墙忸}關(guān)鍵.5、A【解析】【分析】連接OD,如圖,利用折疊性質(zhì)得由弧AD、線段AC和CD所圍成的圖形的面積等于陰影部分的面積,AC=OC,則OD=2OC=6,CD=3,從而得到∠CDO=30°,∠COD=60°,然后根據(jù)扇形面積公式,利用由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD-S△COD,進(jìn)行計算即可.【詳解】解:連接OD,如圖,∵扇形紙片折疊,使點A與點O恰好重合,折痕為CD,∴AC=OC,∴OD=2OC=6,∴CD=,∴∠CDO=30°,∠COD=60°,∴由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD﹣S△COD=﹣=6π﹣,∴陰影部分的面積為6π﹣.故選A.【考點】本題考查了扇形面積的計算:陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.記住扇形面積的計算公式.也考查了折疊性質(zhì).二、填空題1、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據(jù)題目中的數(shù)據(jù),可以求得AB、OA、DE的長,∠BAO和∠EDO的度數(shù),從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點】本題主要考查扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.2、【解析】【分析】先根據(jù)題目條件計算出OD,CD的長度,判斷為等邊三角形,之后表示出陰影面積的計算公式進(jìn)行計算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點】本題考查了陰影面積的計算,熟知不規(guī)則陰影面積的計算方法是解題的關(guān)鍵.3、這兩條直線不平行【解析】【分析】本題需先根據(jù)已知條件和反證法的特點進(jìn)行證明,即可求出答案.【詳解】證明:已知兩條直線都和第三條直線平行;

假設(shè)這兩條直線不平行,則兩條直線有交點,因為過直線外一點有且只有一條直線與已知直線平行因此,兩條直線有交點時,它們不可能同時與第三條直線平行因此假設(shè)與結(jié)論矛盾.故假設(shè)不成立,即如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.故答案為:這兩條直線不平行.【考點】本題主要考查了反證法,在解題時要根據(jù)反證法的特點進(jìn)行證明是本題的關(guān)鍵.4、120°或60°【解析】【分析】根據(jù)弦垂直平分半徑及OB=OC證明四邊形OBAC是矩形,再根據(jù)OB=OA,OE=求出∠BOE=60°,即可求出答案.【詳解】設(shè)弦垂直平分半徑于點E,連接OB、OC、AB、AC,且在優(yōu)弧BC上取點F,連接BF、CF,∴OB=AB,OC=AC,∵OB=OC,∴四邊形OBAC是菱形,∴∠BOC=2∠BOE,∵OB=OA,OE=,∴cos∠BOE=,∴∠BOE=60°,∴∠BOC=∠BAC=120°,∴∠BFC=∠BOC=60°,∴弦所對的圓周角為120°或60°,故答案為:120°或60°.【考點】此題考查圓的基本知識點:圓的垂徑定理,同圓的半徑相等的性質(zhì),圓周角定理,菱形的判定定理及性質(zhì)定理,銳角三角函數(shù),熟練掌握圓的各性質(zhì)定理是解題的關(guān)鍵.5、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.三、解答題1、(1)證明見解析(2)2【解析】【分析】(1)連接OC,由AB是⊙O的直徑可得出∠ACB=90°,即∠ACO+∠OCB=90°,由等腰三角形的性質(zhì)結(jié)合∠BCD=∠A,即可得出∠OCD=90°,即CD是⊙O的切線;(2)在Rt△OCD中,由勾股定理可求出OD的值,進(jìn)而可得出BD的長.【詳解】解:(1)如圖,連接OC.∵AB是⊙O的直徑,C是⊙O上一點,∴∠ACB=90°,即∠ACO+∠OCB=90°.∵OA=OC,∠BCD=∠A,∴∠ACO=∠A=∠BCD,∴∠BCD+∠OCB=90°,即∠OCD=90°,∴CD是⊙O的切線.(2)在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴OD==5,∴BD=OD﹣OB=5﹣3=2.2、(1)45°;(2)8【解析】【詳解】試題分析:(1)連接OB,OC,由正方形的性質(zhì)知,是等腰直角三角形,根據(jù),由圓周角定理可以求出;(2)過點O作OE⊥BC于點E,由等腰直角三角形的性質(zhì)可知OE=BE,由垂徑定理可知BC=2BE,故可得出結(jié)論.試題解析:(1)連接OB,OC,∵四邊形ABCD為正方形,∴∠BOC=90°,∴∠P=∠BOC=45°;(2)過點O作OE⊥BC于點E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE=,∴BC=2BE=2×.點睛:垂徑定理:垂直于弦的直徑平分弦并且平分弦所對的兩條弧.3、(1)∠ACB=50°(2)∠EAC=20°【解析】【分析】(1)連接OA、OB,根據(jù)切線性質(zhì)和∠P=80°,得到∠AOB=100°,根據(jù)圓周角定理得到∠C=50°;(2)連接CE,證明∠BCE=∠BAE=40°,根據(jù)等腰三角形性質(zhì)得到∠ABD=∠ADB=70°,由三角形外角性質(zhì)得到∠EAC=20°.(1)連接OA、OB,

∵PA,PB是⊙O的切線,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圓周角定理得,∠ACB=∠AOB=50°;(2)連接CE,∵AE為⊙O的直徑,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【考點】本題考查了圓的切線,圓周角,等腰三角形,三角形外角,熟練掌握圓的切線性質(zhì),圓周角定理及推論,等腰三角形的性質(zhì),三角形外角性質(zhì),是解決問題的關(guān)鍵.4、(1),;(2);(3).【解析】【分析】(1)根據(jù)新定義計算即可;(2)由(1)可知,P的等和點縱坐標(biāo)比橫坐標(biāo)大2,根據(jù)等和點的定義,A的橫坐標(biāo)比縱坐標(biāo)大2,由此可得方程,求解即可;(3)因為線段MN上總存在線段PC上每個點的等和點.且MN的最小值為5,所以PC的最大距離不能超過5,分別找到點P和點C的等和點所在的區(qū)域或直線,然后得到MN取得最大值時,b的邊界即可.(1)解:由題意可知:∵,∴點Q1是點P的等和點;∵,∴點Q2不是點P的等和點;∵,∴點Q3是點P的等和點;∴點P的等和點有,,(2)解:設(shè),由(1)可知,P的等和點縱坐標(biāo)比橫坐標(biāo)大2,∵點P的等和點也是點A的等和點,∴A的橫坐標(biāo)比縱坐標(biāo)大2,則,解之得:,故,(3)解:∵P(2,0),∴P點的等和點在直線y=x+2上,∵B(b,0),∴B點的等和點在直線y=x+b上,設(shè)直線y=x+b與y軸的交點為B'(0,b),∵BC=1,∴C點在以B為圓心,半徑為1的圓上,∴點C的等和點是兩條直線及其之間與其平行的所有平行線上,以B'為圓心,1為半徑作圓,過點B'作y=x+2的垂線交圓與N點,交直線于M點,∵M(jìn)N的最小值為5,∴B'M最小值為4,在Rt△B'MP'中,B'P=,∴PB=,∴OB=,同理當(dāng)B點在y軸左側(cè)時OB=,∴≤b≤.【考點】本題考查新定義,涉及到平面直角坐標(biāo)系,坐標(biāo)軸上兩點之間的距離,一次函數(shù),解題的關(guān)鍵是理解題意,根據(jù)題意進(jìn)行求解,(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論