中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向練習(xí)試題(含答案解析版)_第1頁(yè)
中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向練習(xí)試題(含答案解析版)_第2頁(yè)
中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向練習(xí)試題(含答案解析版)_第3頁(yè)
中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向練習(xí)試題(含答案解析版)_第4頁(yè)
中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向練習(xí)試題(含答案解析版)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,一棵大樹(shù)在一次強(qiáng)臺(tái)風(fēng)中距地面5m處折斷,倒下后樹(shù)頂端著地點(diǎn)A距樹(shù)底端B的距離為12m,這棵大樹(shù)在折斷前的高度為(

)A.10m B.15m C.18m D.20m2、我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中有這樣一個(gè)問(wèn)題:

“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.水深、葭長(zhǎng)各幾何?”.其大意是:如圖,有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺(丈、尺是長(zhǎng)度單位,1丈=10尺)的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L(zhǎng)度分別是多少?若設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)題意,所列方程正確的是(

)A.102+(x-1)2=x2 B.102+(x-1)2=(x+1)2C.52+(x-1)2=x2 D.52+(x-1)2=(x+1)23、《九章算術(shù)》中的“折竹抵地”問(wèn)題:今有竹高一丈,末折抵地,去根六尺.問(wèn)折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),問(wèn)折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為尺,則可列方程為(

)A. B.C. D.4、“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.65、如圖,在矩形ABCD中,,將△ABD沿對(duì)角線BD對(duì)折,得到△EBD,DE與BC交于F,,則(

)A. B.3 C. D.66、如圖,在7×7的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,畫(huà)一條線段AB=,使點(diǎn)A,B在小正方形的頂點(diǎn)上,設(shè)AB與網(wǎng)格線相交所成的銳角為α,則不同角度的α有(

)A.1種 B.2種 C.3種 D.4種7、已知點(diǎn)是平分線上的一點(diǎn),且,作于點(diǎn),點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),若,則的最小值為(

)A.2 B.3 C.4 D.5第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、已知a、b、c是一個(gè)三角形的三邊長(zhǎng),如果滿足,則這個(gè)三角形的形狀是_______.2、如圖,在△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D.E為線段BD上一點(diǎn),連結(jié)CE,將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)B'落在CD的延長(zhǎng)線上.若AB=10,BC=8,則△ACE的面積為_(kāi)_______.3、在△ABC中,∠C=90°,AB=10,AC=8,則BC的長(zhǎng)為_(kāi)____.4、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長(zhǎng)為_(kāi)______5、如圖,在矩形中,,垂足為點(diǎn).若,,則的長(zhǎng)為_(kāi)_____.6、如圖,在的網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都為1,的頂點(diǎn)、、都在格點(diǎn)上,點(diǎn)為邊的中點(diǎn),則線段的長(zhǎng)為_(kāi)_______.7、如圖所示,數(shù)軸上點(diǎn)A所表示的數(shù)為_(kāi)______.8、如圖,一個(gè)高,底面周長(zhǎng)的圓柱形水塔,現(xiàn)制造一個(gè)螺旋形登梯,為了減小坡度,要求登梯繞塔環(huán)繞一周半到達(dá)頂端,問(wèn)登梯至少為_(kāi)__________長(zhǎng).三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開(kāi)始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開(kāi)始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為ts.(1)出發(fā)3s后,求PQ的長(zhǎng);(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)多久后,△PQB能形成等腰三角形?(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.2、我們知道,到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.由此,我們可以引入如下新定義:到三角形的兩個(gè)頂點(diǎn)距離相等的點(diǎn),叫做此三角形的準(zhǔn)外心.(1)如圖1,點(diǎn)P在線段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求證:點(diǎn)P是△APD的準(zhǔn)外心;(2)如圖2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的準(zhǔn)外心P在△ABC的直角邊上,試求AP的長(zhǎng).3、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.4、數(shù)學(xué)中,常對(duì)同一個(gè)量(圖形的面積、點(diǎn)的個(gè)數(shù)等)用兩種不同的方法計(jì)算,從而建立相等關(guān)系,我們把這種思想叫“算兩次”.“算兩次”也稱作富比尼原理,是一種重要的數(shù)學(xué)思想,由它可以推導(dǎo)出很多重要的公式.(1)如圖1,是一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,沿圖中虛線用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖2的方式拼成一個(gè)正方形.①用“算兩次”的方法計(jì)算圖2中陰影部分的面積:第一次列式為,第二次列式為,因?yàn)閮纱嗡兴闶奖硎镜氖峭粋€(gè)圖形的面積,所以可以得出等式;②在①中,如果,,請(qǐng)直接用①題中的等式,求陰影部分的面積;(2)如圖3,兩個(gè)邊長(zhǎng)分別為,,的直角三角形和一個(gè)兩條直角邊都是的直角三角形拼成一個(gè)梯形,用“算兩次”的方法,探究,,之間的數(shù)量關(guān)系.5、做4個(gè)全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,再做一個(gè)邊長(zhǎng)為c的正方形,把它們按如圖的方式拼成正方形,請(qǐng)用這個(gè)圖證明勾股定理.6、如圖,在正方形ABCD中,E是邊AB上的一動(dòng)點(diǎn),點(diǎn)F在邊BC的延長(zhǎng)線上,且,連接DE,DF.(1)求證:;(2)連接EF,取EF中點(diǎn)G,連接DG并延長(zhǎng)交BC于H,連接BG.①依題意,補(bǔ)全圖形;②求證:;③若,用等式表示線段BG,HG與AE之間的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.7、如圖,把長(zhǎng)方形紙片沿折疊,使點(diǎn)落在邊上的點(diǎn)處,點(diǎn)落在點(diǎn)處.(1)試說(shuō)明;(2)設(shè),,,試猜想,,之間的關(guān)系,并說(shuō)明理由.-參考答案-一、單選題1、C【解析】【詳解】∵樹(shù)的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹(shù)原來(lái)的高度=BC+AC=5+13=18m.故選C.2、C【解析】【分析】設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)勾股定理,即可求解.【詳解】解:設(shè)這跟蘆葦?shù)拈L(zhǎng)度為x尺,根據(jù)題意得:52+(x-1)2=x2故選:C【考點(diǎn)】本題主要考查了勾股定理的應(yīng)用,明確題意,準(zhǔn)確構(gòu)造直角三角形是解題的關(guān)鍵.3、D【解析】【分析】先畫(huà)出三角形,根據(jù)勾股定理和題目設(shè)好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設(shè)折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點(diǎn)】本題考查勾股定理的方程思想,解題的關(guān)鍵是根據(jù)題意利用勾股定理列出方程.4、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.5、A【解析】【分析】根據(jù)折疊的性質(zhì),可知BF=DF=-EF,在Rt中,由勾股定理得:,由此即可求得EF值.【詳解】解:∵,,∴AD=,,由折疊可知,AB=BE=6,AD=ED=,,,∵,∴∠BDF=∠DBF∴BF=DF=-EF,∴在Rt中,由勾股定理得:,∴,解得:EF=,故選:A.【考點(diǎn)】本題主要考查的是勾股定理的應(yīng)用,靈活利用折疊進(jìn)行發(fā)掘條件是解題的關(guān)鍵.6、C【解析】【詳解】如圖,(1)當(dāng)AB=時(shí),AB與網(wǎng)格線相交所成的兩個(gè)銳角:∠=45°;(2)當(dāng)AB=時(shí),AB與網(wǎng)格線相交所成的銳角∠有2個(gè)不同的角度;綜上所述,AB與網(wǎng)格線相交所成的銳角的不同角度有3個(gè).故選C.7、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時(shí),PN最短,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當(dāng)PN⊥OA時(shí),PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點(diǎn)】本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.二、填空題1、直角三角形【解析】【分析】根據(jù)絕對(duì)值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點(diǎn)】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.2、【解析】【分析】求出AC=6,面積法求出CD=,在Rt△BCD中,用勾股定理得BD=,即可得B'D=B'C-CD=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,用勾股定理可得BE=4,即可得到答案.【詳解】解:∵∠ACB=90°,AB=10,BC=8,∴AC==6,∵CD⊥AB,∴2S△ABC=AB?CD=AC?BC,∴CD==,在Rt△BCD中,BD=,∵將邊BC沿CE折疊,使點(diǎn)B的對(duì)稱點(diǎn)B'落在CD的延長(zhǎng)線上,∴B'C=BC=8,BE=B'E,∴B'D=B'C-CD=8-=,設(shè)BE=B'E=x,則DE=BD-BE=-x,在Rt△B'DE中,B'D2+DE2=B'E2,∴()2+(-x)2=x2,解得x=4,∴BE=4,∴AE=AB-BE=6,∴△ACE的面積為AE?CD=×6×=,故答案為:.【考點(diǎn)】本題考查直角三角形中的折疊問(wèn)題,解題的關(guān)鍵是掌握折疊的性質(zhì),熟練運(yùn)用勾股定理.3、6【解析】【分析】根據(jù)勾股定理求解即可.【詳解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC===6故答案為:6.【考點(diǎn)】本題考查勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方是解答此題的關(guān)鍵.4、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長(zhǎng),進(jìn)而可得出BD的長(zhǎng),根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長(zhǎng).【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.5、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長(zhǎng),根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長(zhǎng)即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點(diǎn)】本題考查矩形的性質(zhì)、正弦、勾股定理等知識(shí),是重要考點(diǎn),難度較易,掌握相關(guān)知識(shí)是解題關(guān)鍵.6、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點(diǎn)O為AB邊的中點(diǎn),∴CO=AB=2.5,故答案為:2.5.【考點(diǎn)】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識(shí),熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.7、【解析】【分析】根據(jù)數(shù)軸上點(diǎn)的特點(diǎn)和相關(guān)線段的長(zhǎng),結(jié)合勾股定理求出斜邊長(zhǎng),即可求出-1和A之間的線段的長(zhǎng),即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長(zhǎng)為,那么-1和A之間的距離為,那么數(shù)軸上點(diǎn)A所表示的數(shù)為:.故答案為:.【考點(diǎn)】本題考查實(shí)數(shù)與數(shù)軸之間的對(duì)應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長(zhǎng)是解答本題的關(guān)鍵.8、20m.【解析】【分析】試題分析:要求登梯的長(zhǎng),需將圓柱的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),借助于勾股定理.【詳解】將圓柱表面按一周半開(kāi)展開(kāi)呈長(zhǎng)方形,

∵圓柱高16m,底面周長(zhǎng)8m,設(shè)螺旋形登梯長(zhǎng)為xm,∴x2=(1×8+4)2+162=400,∴登梯至少=20m故答案為:20m【考點(diǎn)】本題考查圓柱形側(cè)面展開(kāi)圖新問(wèn)題,涉及勾股定理,掌握按要求將圓柱側(cè)面展開(kāi)圖形的方法,會(huì)利用圓周,高與對(duì)角線組成直角三角形,用勾股定理解決問(wèn)題是關(guān)鍵.三、解答題1、(1)PQ=cm(2)出發(fā)秒后△PQB能形成等腰三角形(3)當(dāng)t為11秒或12秒或13.2秒時(shí),△BCQ為等腰三角形.【解析】【分析】(1)可求得AP和BQ,則可求得BP,由勾股定理即可得出結(jié)論;(2)用t可分別表示出BP和BQ,根據(jù)等腰三角形的性質(zhì)可得到BP=BQ,可得到關(guān)于t的方程,可求得t;(3)用t分別表示出BQ和CQ,利用等腰三角形的性質(zhì)可分BQ=BC、CQ=BC和BQ=CQ三種情況,分別得到關(guān)于t的方程,可求得t的值.(1)當(dāng)t=3時(shí),則AP=3,BQ=2t=6,∵AB=16cm,∴BP=AB﹣AP=16﹣3=13(cm),在Rt△BPQ中,PQ===(cm).(2)由題意可知AP=t,BQ=2t,∵AB=16,∴BP=AB﹣AP=16﹣t,當(dāng)△PQB為等腰三角形時(shí),則有BP=BQ,即16﹣t=2t,解得t=,∴出發(fā)秒后△PQB能形成等腰三角形;(3)①當(dāng)CQ=BQ時(shí),如圖1所示,則∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②當(dāng)CQ=BC時(shí),如圖2所示,則BC+CQ=24,∴t=24÷2=12秒.③當(dāng)BC=BQ時(shí),如圖3所示,過(guò)B點(diǎn)作BE⊥AC于點(diǎn)E,則BE=,∴CE===,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.綜上所述:當(dāng)t為11秒或12秒或13.2秒時(shí),△BCQ為等腰三角形.【考點(diǎn)】本題考查了勾股定理、等腰三角形的性質(zhì)、方程思想及分類(lèi)討論思想等知識(shí).用時(shí)間t表示出相應(yīng)線段的長(zhǎng),化“動(dòng)”為“靜”是解決這類(lèi)問(wèn)題的一般思路,注意方程思想的應(yīng)用.2、(1)見(jiàn)解析;(2)AP的長(zhǎng)為或2或【解析】【分析】(1)利用AAS證明△ABP≌△PCD,得到AP=PD,由定義可知點(diǎn)P是△APD的準(zhǔn)外心;(2)先利用勾股定理計(jì)算AC=4,再進(jìn)行討論:當(dāng)P點(diǎn)在AB上,PA=PB,當(dāng)P點(diǎn)在AC上,PA=PC,易得對(duì)應(yīng)AP的值;當(dāng)P點(diǎn)在AC上,PB=PC,設(shè)AP=t,則PC=PB=4﹣x,利用勾股定理得到32+t2=(4﹣t)2,然后解方程得到此時(shí)AP的長(zhǎng).【詳解】(1)證明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠PAB=90°,∠APB+∠DPC=90°,∴∠PAB=∠DPC,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS),∴AP=PD,∴點(diǎn)P是△APD的準(zhǔn)外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC4,當(dāng)P點(diǎn)在AB上,PA=PB,則APAB;當(dāng)P點(diǎn)在AC上,PA=PC,則APAC=2,當(dāng)P點(diǎn)在AC上,PB=PC,如圖2,設(shè)AP=t,則PC=PB=4﹣x,在Rt△ABP中,32+t2=(4﹣t)2,解得t,即此時(shí)AP,綜上所述,AP的長(zhǎng)為或2或.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理及新定義的運(yùn)用能力.理解題中給的定義是解題的關(guān)鍵.3、m=1【解析】【分析】根據(jù)勾股數(shù)定義:滿足a2+b2=c2的三個(gè)正整數(shù),稱為勾股數(shù)可得:(3m+2)2+(4m+8)2=(5m+8)2,再解方程即可.【詳解】解:m>0,3m+2,4m+8,5m+8是一組勾股數(shù),(3m+2)2+(4m+8)2=(5m+8)2,解得:m=1.【考點(diǎn)】此題主要考查了勾股數(shù),關(guān)鍵是掌握勾股數(shù)定義.4、(1)①,,;或,,;②9;(2)【解析】【分析】(1)①第一次求解陰影部分的邊長(zhǎng),再計(jì)算面積,第二次利用大的正方形的面積減去四個(gè)長(zhǎng)方形的面積,從而可建立等式;②直接利用公式,再整體代入求值即可;(2)第一次利用梯形的面積公式計(jì)算,第二次利用圖形的面積和計(jì)算,從而得到公式,再整理即可得到答案.【詳解】解:(1)因?yàn)樾≌叫蔚倪呴L(zhǎng)為:所以第一次計(jì)算的面積為:,第二次計(jì)算的面積為:,所以:;或,,②∵,∴(3)第一次利用梯形的面積公式圖形面積為:第二次利用圖形的面積和計(jì)算為:整理得:【考點(diǎn)】本題考查的是利用幾何圖形的面積推導(dǎo)代數(shù)公式,掌握等面積法推導(dǎo)兩個(gè)完全平方公式之間的關(guān)系,推導(dǎo)勾股定理是解題的關(guān)鍵.5、見(jiàn)詳解.【解析】【分析】利用4個(gè)直角三角形全等,根據(jù)列式,整理即可.【詳解】證明:如圖,,,,∵,即∴,∴.【考點(diǎn)】本題考查了勾股定理的驗(yàn)證,運(yùn)用拼圖的方式,即利用兩種不同的方法計(jì)算同一個(gè)圖形的面積來(lái)驗(yàn)證勾股定理是解決本題的關(guān)鍵.6、(1)見(jiàn)解析(2)①見(jiàn)解析;②見(jiàn)解析;③BG2+HG2=4AE2.【解析】【分析】(1)證△ADE≌△CDF(SAS),得∠ADE=∠CDF,再證∠EDF=90°,即可得出結(jié)論;(2)①依題意,補(bǔ)全圖形即可;②由直角三角形斜邊上的中線性質(zhì)得DG=EF,BG=EF,即可得出結(jié)論;③先證△DEF是等腰直角三角形,得∠DEG=45°,再證DG⊥EF,DG=EF=EG,BG=EF=EG=FG,得∠GDF=45°,∠EDG=∠DEG=45°,∠GBF=∠GFB,然后證△CDH≌△CDF(ASA),得CH=CF,再由勾股定理即可求解.(1)證明:∵四邊形ABCD是正方形,∴AD=CD,∠A=∠B=∠BCD=∠ADC=90°,∴∠DCF=90°,即∠A=∠DCF,又∵AE=CF,∴△ADE≌△CDF(SAS),∴∠ADE=∠CDF,∵∠A

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論