綜合解析人教版8年級數(shù)學上冊《軸對稱》必考點解析試卷(含答案詳解)_第1頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》必考點解析試卷(含答案詳解)_第2頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》必考點解析試卷(含答案詳解)_第3頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》必考點解析試卷(含答案詳解)_第4頁
綜合解析人教版8年級數(shù)學上冊《軸對稱》必考點解析試卷(含答案詳解)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在△ABC中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于

AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于(

A.2 B. C. D.2、如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是(

)A. B.C. D.3、如圖,已知是的角平分線,是的垂直平分線,,,則的長為(

)A.6 B.5 C.4 D.4、如圖,在中,,的周長10,和的平分線交于點,過點作分別交、于、,則的長為(

)A.10 B.6 C.4 D.不確定5、下列命題是假命題的是(

).A.同旁內(nèi)角互補,兩直線平行B.線段垂直平分線上的點到線段兩個端點的距離相等C.相等的角是對頂角D.角是軸對稱圖形第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在銳角中,,,平分,、分別是、上的動點,則的最小值是______.2、正五邊形ABCDE中,對角線AC、BD相較于點P,則∠APB的度數(shù)為_______.3、如圖,,若,則________.4、如圖,過邊長為16的等邊△ABC的邊AB上的一點P,作PE⊥AC于點E,點Q為BC延長線上一點,當PA=CQ時,連接PQ交AC邊于點D,則DE的長為_____.5、如圖,是內(nèi)一定點,點,分別在邊,上運動,若,,則的周長的最小值為___________.三、解答題(5小題,每小題10分,共計50分)1、如圖,點D,E在△ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE.2、在學習矩形的過程中,小明遇到了一個問題:在矩形中,是邊上的一點,試說明的面積與矩形的面積之間的關系.他的思路是:首先過點作的垂線,將其轉(zhuǎn)化為證明三角形全等,然后根據(jù)全等三角形的面積相等使問題得到解決.請根據(jù)小明的思路完成下面的作圖與填空:證明:用直尺和圓規(guī),過點作的垂線,垂足為(只保留作圖?跡).在和中,∵,∴.又,∴__________________①∵,∴__________________②又__________________③∴.同理可得__________________④∴.3、在中,BE,CD為的角平分線,BE,CD交于點F.(1)求證:;(2)已知.①如圖1,若,,求CE的長;②如圖2,若,求的大小.4、平面直角坐標系中,點坐標為,分別是軸,軸正半軸上一點,過點作軸,,點在第一象限,,連接交軸于點,,連接.(1)請通過計算說明;(2)求證;(3)請直接寫出的長為.5、如圖,在中,,,求和的度數(shù).-參考答案-一、單選題1、C【解析】【詳解】根據(jù)勾股定理求出BC,根據(jù)線段垂直平分線性質(zhì)求出AE=BE,根據(jù)勾股定理求出AE,再根據(jù)勾股定理求出DE即可.解:在RtABC中,由勾股定理得:BC==4,連接AE,從作法可知:DE是AB的垂直評分線,根據(jù)性質(zhì)AE=BE,在Rt△ACE中,由勾股定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故選C.“點睛”:本題考查了線段垂直平分線性質(zhì),勾股定理的應用,能靈活運用勾股定理得出方程是解此題的關鍵.2、B【解析】【詳解】解:∵PB+PC=BC,PA+PC=BC,∴PA=PB,根據(jù)線段垂直平分線定理的逆定理可得,點P在線段AB的垂直平分線上,故可判斷B選項正確.故選B.3、D【解析】【分析】根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結(jié)合圖形熟練應用相關的性質(zhì)及定理是解題的關鍵.4、B【解析】【分析】根據(jù)平行線、角平分線和等腰三角形的關系可證DO=DB和EO=EC,從而得出DE=DB+EC,然后根據(jù)的周長即可求出AB.【詳解】解:∵∴∠OBC=∠DOB∵BO平分∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO=DB同理可證:EO=EC∴DE=DO+EO=DB+EC∵,的周長10,∴AD+AE+DE=10∴AD+AE+DB+EC=10∴AB+AC=10∴AB=10-AC=6故選B.【考點】此題考查的是平行線的性質(zhì)、角平分線的定義和等腰三角形的判定,掌握平行線、角平分線和等腰三角形的關系是解決此題的關鍵.5、C【解析】【分析】根據(jù)平行線、垂直平分線、對頂角、軸對稱圖形的性質(zhì),逐個分析,即可得到答案.【詳解】同旁內(nèi)角互補,則兩直線平行,故A正確;線段垂直平分線上的點到線段兩個端點的距離相等,故B正確;由對頂角可得是相等的角;相等的角無法證明是對等角,故C錯誤;角是關于角的角平分線對稱的圖形,是軸對稱圖形,故D正確故選:C.【考點】本題考查了平行線、垂直平分線、對頂角、軸對稱圖形、角平分線、命題的知識;解題的關鍵是熟練掌握平行線、垂直平分線、對頂角、軸對稱圖形、角平分線的性質(zhì),從而完成求解.二、填空題1、4【解析】【分析】過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,則CE即為CM+MN的最小值,再根據(jù)BC=8,∠ABC=30°,由直角三角形的性質(zhì)即可求出CE的長.【詳解】解:過點C作CE⊥AB于點E,交BD于點M′,過點M′作M′N′⊥BC,∵BD平分∠ABC,∴M′E=M′N′,∴M′N′+CM′=EM′+CM′=CE,則CE即為CM+MN的最小值,在Rt中,BC=8,∠ABC=30°,∴CM+MN的最小值是4.故答案為:4.【考點】本題考查的是軸對稱-最短路線問題,根據(jù)題意作出輔助線,構(gòu)造出直角三角形,含有30°的直角三角形的性質(zhì)求解是解答此題的關鍵.2、72°##72度【解析】【分析】根據(jù)正五邊形的性質(zhì),可得,AB=BC=CD,從而得到∠ACB=∠CBD=36°,再由三角形外角的性質(zhì),即可求解.【詳解】解:∵多邊形ABCDE是正五邊形,∴,AB=BC=CD,∴∠ACB=∠CBD=36°,∴∠APB=∠ACB+∠CBD=72°.故答案為:72°【考點】本題主要考查了正多邊形的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì),熟練掌握正多邊形的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì)是解題的關鍵.3、100【解析】【分析】先根據(jù)EC=EA.∠CAE=40°得出∠C=40°,再由三角形外角的性質(zhì)得出∠AED的度數(shù),利用平行線的性質(zhì)即可得出結(jié)論.【詳解】∵EC=EA,∠CAE=40°,∴∠C=∠CAE=40°,∵∠DEA是△ACE的外角,∴∠AED=∠C+∠CAE=40°+40°=80°,∵AB∥CD,∴∠BAE+∠AED=180°∴∠BAE=100°.【考點】本題考查的是等邊對等角,三角形的外角,平行線的性質(zhì),熟知兩直線平行同旁內(nèi)角互補是解答此題的關鍵.4、8【解析】【分析】根據(jù)題意,作出合適的輔助線,然后根據(jù)全等三角形的判定和性質(zhì)可以求得DE的長,本題得以解決.【詳解】解:作QF⊥AC,交AC的延長線于點F,則∠QFC=90°,∵△ABC是等邊三角形,PE⊥AC于點E,∴∠A=∠ACB=60°,∠PEA=90°,∴∠PEA=∠QFC,∵∠ACB=∠QCF,∴∠A=∠QCF,在△PEA和△QFC中,,∴△PEA≌△QFC(AAS),∴AE=CF,PE=QF,∵AC=AE+EC=16,∴EF=CF+EC=16,∵∠PED=90°,∠QFD=90°,∴∠PED=∠QFD,在△PED和△QFD中,,∴△PED≌△QFD(AAS),∴ED=FD,∵ED+FD=EF=16,∴DE=8,故答案為:8.【考點】本題考查了全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì),解答本題的關鍵是明確題意,利用等三角形的判定與性質(zhì)和數(shù)形結(jié)合的思想解答.5、3【解析】【分析】如圖,作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.根據(jù)對稱的性質(zhì)可以證得:△COD是等邊三角形,據(jù)此即可求解.【詳解】如圖,作P關于OA,OB的對稱點C,D.連接OC,OD.則當M,N是CD與OA,OB的交點時,△PMN的周長最短,最短的值是CD的長.∵點P關于OA的對稱點為C,∴PM=CM,OP=OC,∠COA=∠POA;∵點P關于OB的對稱點為D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等邊三角形,∴CD=OC=OD=3.∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【考點】此題主要考查軸對稱--最短路線問題,綜合運用了等邊三角形的知識.正確作出圖形,理解△PMN周長最小的條件是解題的關鍵.三、解答題1、見解析【解析】【分析】過A作AF⊥BC于F,根據(jù)等腰三角形的性質(zhì)得出BF=CF,DF=EF,即可求出答案.【詳解】證明:如圖,過A作AF⊥BC于F,∵AB=AC,AD=AE,∴BF=CF,DF=EF,∴BF-DF=CF-EF,∴BD=CE.【考點】本題考查了等腰三角形的性質(zhì)的應用,注意:等腰三角形的底邊上的高,底邊上的中線,頂角的平分線互相重合.2、、、、【解析】【分析】過點作的垂線,垂足為,分別利用AAS證得,,利用全等三角形的面積相等即可求解.【詳解】證明:用直尺和圓規(guī),過點作的垂線,垂足為(只保留作圖?跡).如圖所示,在和中,∵,∴.又,∴①∵,∴②又③∴.同理可得④∴.故答案為:、、、【考點】本題考查了全等三角形的判定和性質(zhì),掌握全等三角形的面積相等是解題的關鍵.3、(1)證明見解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形內(nèi)角和定理和角平分線得出的度數(shù),再由三角形內(nèi)角和定理可求出的度數(shù),(2)在BC上取一點G使BG=BD,構(gòu)造(SAS),再證明,即可得,由此求出答案;(3)延長BA到P,使AP=FC,構(gòu)造(SAS),得PC=BC,,再由三角形內(nèi)角和可求,,進而可得.【詳解】解:(1)、分別是與的角平分線,,,,(2)如解(2)圖,在BC上取一點G使BG=BD,由(1)得,,,∴,在與中,,∴(SAS)∴,∴,∴,∴在與中,,,,,;∵,,∴(3)如解(3)圖,延長BA到P,使AP=FC,,∴,在與中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【考點】本題考查的是角平分線的性質(zhì)、全等三角形的判定與性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出全等三角形是解答此題的關鍵.4、(1)證明見解析;(2)證明見解析;(3).【解析】【分析】(1)先根據(jù)點A坐標可得OA的長,再根據(jù)即可得證;(2)如圖(見解析),延長至點,使得,連接,先根據(jù)三角形全等的判定定理與性質(zhì)可得,再根據(jù)直角三角形的性質(zhì)和得出,然后根據(jù)三角形全等的判定定理與性質(zhì)即可得證;(3)先由題(2)兩個三角形全等可得,再根據(jù)平行線的性質(zhì)得出,從而有,然后根據(jù)等腰三角形的定義(等角對等邊)即可得.【詳解】(1),即;(2)如圖,延長至點,使得,連接,軸,即;(3)由(2)已證,軸(等角對等邊)故答案為:5.【考點】本題考查了三角形全等的判定定理與性質(zhì)、等腰三角形的定義、平行線的性質(zhì)等知識點,較難的是題(2),通過作輔助線,構(gòu)造全等三角形是解題關鍵.5、6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論