重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試卷_第1頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試卷_第2頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試卷_第3頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試卷_第4頁(yè)
重難點(diǎn)解析人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試試卷_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在和中,,,,線段BC的延長(zhǎng)線交DE于點(diǎn)F,連接AF.若,,,則線段EF的長(zhǎng)度為(

)A.4 B. C.5 D.2、圖中的小正方形邊長(zhǎng)都相等,若,則點(diǎn)Q可能是圖中的(

)A.點(diǎn)D B.點(diǎn)C C.點(diǎn)B D.點(diǎn)A3、如圖所示,是的邊上的中線,cm,cm,則邊的長(zhǎng)度可能是(

)A.3cm B.5cm C.14cm D.13cm4、如圖,在和中,,,,則(

)A.30° B.40° C.50° D.60°5、如圖,在△ABC中,AC=5,AB=7,AD平分∠BAC,DE⊥AC,DE=2,則△ABC的面積為()A.14 B.12 C.10 D.7第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在△ABC中,點(diǎn)D是AC的中點(diǎn),分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.2、在△ABC中,∠C=90°,AD是△ABC的角平分線,BC=6、AC=8、AB=10,則點(diǎn)D到AB的距離為_______.3、如圖,在矩形ABCD中,AB=8cm,AD=12cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/s的速度沿BC邊向點(diǎn)C運(yùn)動(dòng),到達(dá)點(diǎn)C停止,同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以vcm/s的速度沿CD邊向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D停止,規(guī)定其中一個(gè)動(dòng)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).當(dāng)v為______時(shí),△ABP與△PCQ全等.4、已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.5、如圖,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,則∠B=______度.三、解答題(5小題,每小題10分,共計(jì)50分)1、中,,,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),連接,過點(diǎn)作于點(diǎn).(1)如圖1,分別延長(zhǎng),相交于點(diǎn),求證:;(2)如圖2,若平分,,求的長(zhǎng);(3)如圖3,是延長(zhǎng)線上一點(diǎn),平分,試探究,,之間的數(shù)量關(guān)系并說明理由.2、如圖,在中,,點(diǎn)在的延長(zhǎng)線上,于點(diǎn),若,求證:.3、如圖,是邊長(zhǎng)為1的等邊三角形,,,點(diǎn),分別在,上,且,求的周長(zhǎng).4、如圖,在中,,,分別過點(diǎn)B,C向過點(diǎn)A的直線作垂線,垂足分別為點(diǎn)E,F(xiàn).(1)如圖①,過點(diǎn)A的直線與斜邊BC不相交時(shí),求證:①;②.(2)如圖②,其他條件不變,過點(diǎn)A的直線與斜邊BC相交時(shí),若,,試求EF的長(zhǎng).5、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.-參考答案-一、單選題1、B【解析】【分析】證明,,根據(jù)全等三角形對(duì)應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.2、A【解析】【分析】根據(jù)全等三角形的判定即可解決問題.【詳解】解:觀察圖象可知△MNP≌△MFD.故選:A.【考點(diǎn)】本題考查全等三角形的判定,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.3、B【解析】【分析】延長(zhǎng)AD至M使DM=AD,連接CM,根據(jù)SAS得出,得出AB=CM=4cm,再根據(jù)三角形的三邊關(guān)系得出AC的范圍,從而得出結(jié)論.【詳解】解:延長(zhǎng)AD至M使DM=AD,連接CM,∵是的邊上的中線,∴BD=CD,∵∠ADB=∠CDM,∴,∴MC=AB=5cm,AD=DM=4cm,∴AM=8cm在中,即:3<AC<13,故選:B【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)以及三角形的三邊關(guān)系,根據(jù)三角形的三邊關(guān)系找出AC長(zhǎng)度的取值范圍是解題的關(guān)鍵.4、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計(jì)算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點(diǎn)】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關(guān)鍵在于找出角度的數(shù)量關(guān)系.5、B【解析】【分析】過點(diǎn)D作DF⊥AB于點(diǎn)F,利用角平分線的性質(zhì)得出,將的面積表示為面積之和,分別以AB為底,DF為高,AC為底,DE為高,計(jì)算面積即可求得.【詳解】過點(diǎn)D作DF⊥AB于點(diǎn)F,∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴,∴,故選:B.【考點(diǎn)】本題考查角平分線的性質(zhì),角平分線上的點(diǎn)到角兩邊的距離相等,熟記性質(zhì)作出輔助線是解題關(guān)鍵.二、填空題1、2【解析】【分析】延長(zhǎng)BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據(jù)△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進(jìn)而可得BD與MN的數(shù)量關(guān)系即可求解.【詳解】解:如圖,延長(zhǎng)BD到E,使DE=BD,連接AE,∵點(diǎn)D是AC的中點(diǎn),∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)、等腰直角三角形,解決本題的關(guān)鍵是掌握全等三角形的判定與性質(zhì).2、或【解析】【分析】作DE⊥AB于E,如圖,先根據(jù)勾股定理計(jì)算出BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用面積法得到10x=6(8-x),然后解方程即可.【詳解】解:作DE⊥AB于E,如圖,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=8(6-x),解得x=,即點(diǎn)D到AB邊的距離為.故答案為:.【考點(diǎn)】本題考查了角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等,由已知能夠注意到D到AB的距離即為DE長(zhǎng)是解決的關(guān)鍵.3、2或【解析】【詳解】可分兩種情況:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分別計(jì)算出t的值,進(jìn)而得到v的值.【解答】解:①當(dāng)BP=CQ,AB=PC時(shí),△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②當(dāng)BA=CQ,PB=PC時(shí),△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,綜上所述,當(dāng)v=2或時(shí),△ABP與△PQC全等,故答案為:2或.【考點(diǎn)】此題考查了動(dòng)點(diǎn)問題,全等三角形的性質(zhì)的應(yīng)用,解一元一次方程,正確理解全等三角形的性質(zhì)得到相等的對(duì)應(yīng)邊求出t是解題的關(guān)鍵.4、4.【解析】【分析】過點(diǎn)D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對(duì)的直角邊等于斜邊的一半可求出DF的長(zhǎng),此題得解.【詳解】過點(diǎn)D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點(diǎn)】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對(duì)的直角邊等于斜邊的一半,求出DF的長(zhǎng)是解題的關(guān)鍵.5、120【解析】【分析】根基三角形全等的性質(zhì)得到∠C=∠C′=24°,再根據(jù)三角形的內(nèi)角和定理求出答案.【詳解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案為:120.【考點(diǎn)】此題考查三角形全等的性質(zhì)定理:全等三角形的對(duì)應(yīng)角相等,三角形的內(nèi)角和定理.三、解答題1、(1)見解析(2)(3),理由見解析【解析】【分析】(1)欲證明BE=AD,只要證明即可;(2)如圖2,分別延長(zhǎng)BF,AC交于點(diǎn)E,證,可求;(3)如圖3中,分別延長(zhǎng)BF,AC交于點(diǎn)E,由(1)可得△ACD≌△BCE,得CD=CE,再證可得結(jié)論.(1)解:(1)∵,∴,又∵,∴.在和中,∴.∴.(2)解:如圖2,延長(zhǎng),交于點(diǎn).∵,∴,∵平分,∴.在和中,∴.∴.由(1)可得,.∴.(3)解:.理由:如圖3,延長(zhǎng),交于點(diǎn).由(1)可得,,∴.∵,∴,∵平分,∴.在和中,∴.∴.∵.∴.【考點(diǎn)】本題考查三角形綜合題、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?jí)狠S題.2、證明見解析【解析】【分析】利用AAS證明,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】證明:∵,∴∠ADE=90°,∵,∴∠ACB=∠ADE,在和中,∴,∴AE=AB,AC=AD,∴AE-AC=AB-AD,即EC=BD.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握基本知識(shí).3、2【解析】【分析】延長(zhǎng)至點(diǎn),使,連接,證明推出,,進(jìn)而得到,從而證明,推出EF=CP,由此求出的周長(zhǎng)=AB+AC得到答案.【詳解】解:如圖,延長(zhǎng)至點(diǎn),使,連接.∵是等邊三角形,∴.∵,,∴,∴,∴.在和中,,∴,∴,.∵,,∴,∴,∴.在和中,,∴,∴,∴,∴的周長(zhǎng).【考點(diǎn)】此題考查全等三角形的判定及性質(zhì),等邊三角形的性質(zhì),等腰三角形等邊對(duì)等角的性質(zhì),題中輔助線的引出是解題的關(guān)鍵.4、(1)①見詳解;②見詳解;(2)7【解析】【分析】(1)①由條件可求得∠EBA=∠FAC,利用AAS可證明△ABE≌△CAF;②利用全等三角形的性質(zhì)可得EA=FC,EB=FA,利用線段的和差可證得結(jié)論;(2)同(1)可證明△ABE≌△CAF,可證得EF=FA?EA,代入可求得EF的長(zhǎng).【詳解】(1)證明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB與△CFA中∵,∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB與△CFA中,∴△ABE≌△CAF(AAS),∴EA=FC,EB=FA,∴EF=FA?EA=EB?FC=10?3=7.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等)是解題的關(guān)鍵.5、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據(jù)BD平分∠ABC,可得∠ABD=∠EBD,根據(jù),可判定△ABD≌△EBD,根據(jù)全等三角形的性質(zhì)可得:AD=ED,∠A=∠BED

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論