中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》模擬題庫及答案詳解(奪冠系列)_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》模擬題庫及答案詳解(奪冠系列)_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》模擬題庫及答案詳解(奪冠系列)_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》模擬題庫及答案詳解(奪冠系列)_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》模擬題庫及答案詳解(奪冠系列)_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《旋轉(zhuǎn)》模擬題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,由個小正方形組成的田字格,的頂點都是小正方形的頂點,在田字格上能畫出與成軸對稱,且頂點都在小正方形頂點上的三角形的個數(shù)共有()A.2個 B.3個 C.4個 D.5個2、下列幾何圖形中,是軸對稱圖形但不是中心對稱圖形的是(

)A.梯形 B.等邊三角形 C.平行四邊形 D.矩形3、如圖,在鈍角中,,將繞點順時針旋轉(zhuǎn)得到,點,的對應(yīng)點分別為,,連接.則下列結(jié)論一定正確的是(

)A. B. C. D.平分4、如圖,Rt△ABC中,∠C=90°,∠A=30°,AB=20,點P是AC邊上的一個動點,將線段BP繞點B順時針旋轉(zhuǎn)60°得到線段BQ,連接CQ.則在點P運動過程中,線段CQ的最小值為(

)A.4 B.5 C.10 D.55、如圖,正三角形ABC的邊長為3,將△ABC繞它的外心O逆時針旋轉(zhuǎn)60°得到△A'B'C',則它們重疊部分的面積是()A.2 B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在平面直角坐標系中,將點A先向右平移4個單位,再向下平移6個單位得到點B,如果點A和點B關(guān)于原點對稱,那么點A的坐標是____________.2、如圖,在正方形ABCD中,頂點A,B,C,D在坐標軸上,且,以AB為邊構(gòu)造菱形ABEF(點E在x軸正半軸上),將菱形ABEF與正方形ABCD組成的圖形繞點O逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,則第27次旋轉(zhuǎn)結(jié)束時,點的坐標為________.3、如圖,在△ABC中,∠CAB=65°,在同一平面內(nèi),將△ABC繞點A逆時針旋轉(zhuǎn)到的位置,使得,則等于_____.4、如圖,正比例函數(shù)y=kx(k≠0)的圖像經(jīng)過點A(2,4),AB⊥x軸于點B,將△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,則直線AC的函數(shù)表達式為_____.5、如圖所示,五角星的頂點是一個正五邊形的五個頂點,這個五角星繞中心至少旋轉(zhuǎn)__________度能和自身重合.三、解答題(5小題,每小題10分,共計50分)1、閱讀下列材料:問題:如圖(1),已知正方形ABCD中,E、F分別是BC、CD邊上的點,且∠EAF=45°.解決下列問題:(1)圖(1)中的線段BE、EF、FD之間的數(shù)量關(guān)系是______.(2)圖(2),已知正方形ABCD的邊長為8,E、F分別是BC、CD邊上的點,且∠EAF=45°,AG⊥EF于點G,求△EFC的周長.2、圖,在每個小正方形的邊長為1個單位的網(wǎng)格中,的頂點均在格點(網(wǎng)格線的交點)上.(1)將向右平移5個單位得到,畫出;(2)將(1)中的繞點C1逆時針旋轉(zhuǎn)得到,畫出.3、如圖,在平面直角坐標系中,點A的坐標(2,0),點C是y軸上的動點,當(dāng)點C在y軸上移動時,始終保持是等邊三角形(點A、C、P按逆時針方向排列);當(dāng)點C移動到O點時,得到等邊三角形AOB(此時點P與點B重合).〖初步探究〗(1)點B的坐標為;(2)點C在y軸上移動過程中,當(dāng)?shù)冗吶切蜛CP的頂點P在第二象限時,連接BP,求證:;〖深入探究〗(3)當(dāng)點C在y軸上移動時,點P也隨之運動,探究點P在怎樣的圖形上運動,請直接寫出結(jié)論,并求出這個圖形所對應(yīng)的函數(shù)表達式;〖拓展應(yīng)用〗(4)點C在y軸上移動過程中,當(dāng)OP=OB時,點C的坐標為.4、圖1,圖2都是由邊長為1的小等邊三角形構(gòu)成的網(wǎng)格,每個網(wǎng)格圖中有3個小等邊三角形已涂上陰影.請在余下的空白小等邊三角形中,分別按下列要求選取一個涂上陰影:(1)使得4個陰影小等邊三角形組成一個軸對稱圖形.(2)使得4個陰影小等邊三角形組成一個中心對稱圖形.(請將兩個小題依次作答在圖1,圖2中,均只需畫出符合條件的一種情形)5、如圖1,已知正方形的邊在正方形的邊上,連接、.(1)試猜想與的數(shù)量關(guān)系與位置關(guān)系;(2)將正方形繞點按順時針方向旋轉(zhuǎn),使點落在邊上,如圖2,連接和.你認為(1)中的結(jié)論是否還成立?若成立,給出證明;若不成立,請說明理由.-參考答案-一、單選題1、C【解析】【分析】因為頂點都在小正方形上,故可分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸進行尋找.【詳解】分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸,作軸對稱圖形:則△ABM、△ANB、△EHF、△EFC都是符合題意的三角形.故選:C.【考點】考查了利用軸對稱涉及圖案的知識,關(guān)鍵是根據(jù)要求頂點在格點上尋找對稱軸,有一定難度,不要漏解.2、B【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義以及性質(zhì)對各項進行分析即可.【詳解】A、梯形不是軸對稱圖形,也不是中心對稱圖形,故本選項說法錯誤;B、等邊三角形是軸對稱圖形,但不是中心對稱圖形,故本選項說法正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項說法錯誤;D、矩形是軸對稱圖形,也是中心對稱圖形,故本選項說法錯誤.故選:B.【考點】本題考查了軸對稱圖形和中心對稱圖形的判斷,掌握軸對稱圖形和中心對稱圖形的定義以及性質(zhì)是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)旋轉(zhuǎn)可知△CAB≌△EAD,∠CAE=70°,結(jié)合∠BAC=35°,可知∠BAE=35°,則可證得△CAB≌△EAB,即可作答.【詳解】根據(jù)旋轉(zhuǎn)的性質(zhì)可知△CAB≌△EAD,∠CAE=70°,∴∠BAE=∠CAE-∠CAB=70°-35°=35°,AC=AE,AB=AD,BC=DE,∠ABC=∠ADE,故A、B錯誤,∴∠CAB=∠EAB,∵AC=AE,AB=AB,∴△CAB≌△EAB,∴△EAB≌△EAD∴∠BEA=∠DEA,∴AE平分∠BED,故D正確,∴AD+BE=AB+BE>AE=AC,故C錯誤,故選:D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)和全等三角形的判定與性質(zhì),求出∠BAE=35°是解答本題的關(guān)鍵.4、D【解析】【分析】將Rt△ABC繞點B順時針旋轉(zhuǎn)60°得到,再設(shè)線段的中點為M,并連接CM.根據(jù)線段BP的旋轉(zhuǎn)方式確定點Q在線段上運動,再根據(jù)垂線段最短確定當(dāng)Q與點M重合時,CQ取得最小值為CM.根據(jù)∠C=90°,∠A=30°,AB=20求出BC的長度,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出和的長度,根據(jù)線段的和差關(guān)系確定點C是線段的中點,進而確定CM是的中位線,再根據(jù)三角形中位線定理即可求出CM的長度.【詳解】解:如下圖所示,將Rt△ABC繞點B順時針旋轉(zhuǎn)60°得到,再設(shè)線段的中點為M,并連接CM.∵點P是AC邊上的一個動點,線段BP繞點B順時針旋轉(zhuǎn)60°得到線段BQ,∴點Q在線段上運動.∴當(dāng),即點Q與點M重合時,線段CQ取得最小值為CM.∵∠C=90°,∠A=30°,AB=20,∴BC=10.∵Rt△ABC繞點B順時針旋轉(zhuǎn)60°得到,∴=BC=10,.∴.∴.∴點C是線段中點.∵點M是線段的中點,∴CM是的中位線.∴.故選:D.【考點】本題考查旋轉(zhuǎn)的性質(zhì),直角三角形30°所對的直角邊是斜邊的一半,垂線段最短,三角形中位線定理,綜合應(yīng)用這些知識點是解題關(guān)鍵.5、C【解析】【分析】根據(jù)重合部分是正六邊形,連接O和正六邊形的各個頂點,所得的三角形都是全等的等邊三角形,據(jù)此即可求解.【詳解】解:作AM⊥BC于M,如圖:重合部分是正六邊形,連接O和正六邊形的各個頂點,所得的三角形都是全等的等邊三角形.∵△ABC是等邊三角形,AM⊥BC,∴AB=BC=3,BM=CM=BC=,∠BAM=30°,∴AM=BM=,∴△ABC的面積=BC×AM=×3×=,∴重疊部分的面積=△ABC的面積=;故選:C.【考點】本題考查了三角形的外心、等邊三角形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì),理解連接O和正六邊形的各個頂點,所得的三角形都為全等的等邊三角形是關(guān)鍵.二、填空題1、【解析】【分析】先按題目要求對A、B點進行平移,再根據(jù)原點對稱的特征:橫縱坐標互為相反數(shù)進行列方程,求解.【詳解】設(shè),向右平移4個單位,再向下平移6個單位得到∵A、B關(guān)于原點對稱,∴,,解得,,∴故答案為:【考點】本題考查點的平移和原點對稱的性質(zhì),掌握這些是解題關(guān)鍵.2、(2,-2)【解析】【分析】先求出點F坐標,由題意可得每8次旋轉(zhuǎn)一個循環(huán),即可求解.【詳解】解:∵點B(2,0),∴OB=2,∴OA=2,∴AB=OA=2,∵四邊形ABEF是菱形,∴AF=AB=2,∴點F(2,2),由題意可得每4次旋轉(zhuǎn)一個循環(huán),∴27÷4=6…3,∴點F27的坐標與點F3的坐標一樣,在第四象限,如下圖,過F3作F3H⊥y軸,∵F3H⊥y軸,AF⊥y軸,∴∠OAF=∠F3HO=90°,∴∠AOF+∠HOF3=90°,∵OF⊥OF3,∴∠AOF+∠AFO=90°,∴∠AFO=∠HOF3,∴△OAF≌△F3HO,∴HF3=OA=2,OH=AF=2,∴F3(2,-2),∴點F27的坐標(2,-2),故答案為:(2,-2)【考點】本題考查了菱形的性質(zhì),全等三角形的性質(zhì)與判定及旋轉(zhuǎn)的性質(zhì),找到旋轉(zhuǎn)的規(guī)律是本題的關(guān)鍵.3、50°【解析】【分析】由平行線的性質(zhì)可求得的度數(shù),然后由旋轉(zhuǎn)的性質(zhì)得到,然后依據(jù)三角形的性質(zhì)可知的度數(shù),依據(jù)三角形的內(nèi)角和定理可求得的度數(shù),從而得到的度數(shù).【詳解】解:∵∴∵由旋轉(zhuǎn)的性質(zhì)可知:∴∴∴故答案為:.4、y=-0.5x+5【解析】【分析】直接把點A(2,4)代入正比例函數(shù)y=kx,求出k的值即可;由A(2,4),AB⊥x軸于點B,可得出OB,AB的長,再由△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,由旋轉(zhuǎn)不變性的性質(zhì)可知DC=OB,AD=AB,故可得出C點坐標,再把C點和A點坐標代入y=ax+b,解出解析式即可.【詳解】解:∵正比例函數(shù)y=kx(k≠0)經(jīng)過點A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x軸于點B,∴OB=2,AB=4,∵△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)設(shè)直線AC的解析式為y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式為:y=-0.5x+5【考點】本題考查的是一次函數(shù)圖象上點的坐標特點及圖形旋轉(zhuǎn)的性質(zhì),熟知一次函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.5、72【解析】【分析】根據(jù)題意,五角星的五個角全等,根據(jù)圖形間的關(guān)系可得答案.【詳解】根據(jù)題意,五角星的頂點是一個正五邊形的五個頂點,這個五角星可以由一個基本圖形(圖中的陰影部分)繞中心O至少經(jīng)過4次旋轉(zhuǎn)而得到,每次旋轉(zhuǎn)的度數(shù)為360°除以5,為72度.故答案為:72【考點】此題主要考查了旋轉(zhuǎn)對稱圖形,圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應(yīng)點到旋轉(zhuǎn)中心的距離相等.三、解答題1、(1)EF=BE+DF(2)過程見解析【解析】【分析】對于(1),先將△DAF繞點A順時針旋轉(zhuǎn)90°,得到△BAH,可得△ADF≌△ABH,再根據(jù)全等三角形的性質(zhì)得AF=AH,∠EAF=∠EAH,然后根據(jù)“SAS”證明△FAE≌△HAE,根據(jù)全等三角形的對應(yīng)邊相等得出答案;對于(2),先根據(jù)(1),得△FAE≌△HAE,可得AG=AB=AD,再根據(jù)“HL”證明Rt△AEG≌Rt△ABE,得EG=BE,同理GF=DF,可得答案.(1)EF=BE+DF.理由如下:如圖,將△DAF繞點A順時針旋轉(zhuǎn)90°,得到△BAH,∴△ADF≌△ABH,∴∠DAF=∠BAH,AF=AH,∴∠EAF=∠EAH=45°.∵AE=AE,∴△FAE≌△HAE,∴EF=HE=BE+HB,∴EF=BE+DF;(2)由(1),得△FAE≌△HAE,AG,AB分別是△FAE和△HAE的高,∴AG=AB=AD=8.在Rt△AEG和Rt△ABE中,,∴Rt△AEG≌Rt△ABE(HL),∴EG=BE,同理GF=DF,∴△EFG的周長=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=16.【考點】這是一道關(guān)于正方形和旋轉(zhuǎn)的綜合題目,考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形的判定和性質(zhì)等.2、(1)作圖見解析;(2)作圖見解析.【解析】【分析】(1)利用點平移的規(guī)律找出、、,然后描點即可;(2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出點,即可.【詳解】解:(1)如下圖所示,為所求;(2)如下圖所示,為所求;【考點】本題考查了平移作圖和旋轉(zhuǎn)作圖,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.3、(1);(2)證明見解析;(3)點P在過點B且與AB垂直的直線上,;(4).【解析】【分析】(1)作BD⊥x軸,與x軸交于D,利用等邊三角形的性質(zhì)和勾股定理即可解得;(2)根據(jù)等邊三角形的性質(zhì)可得兩組對應(yīng)邊相等,再結(jié)合角的和差可得∠BAP=∠OAC,再利用SAS可證得全等;(3)由(2)可知PB⊥AB,由此可得P的運動軌跡,再求得AB的解析式,根據(jù)垂直的兩條直線的一次項系數(shù)互為負倒數(shù)設(shè)BP的解析式,將B點坐標代入即可求得解析式;(4)利用兩點之間距離公式求得P點坐標,再利用勾股定理求得BP,結(jié)合(2)可知OC=BP,由此可得C點坐標.【詳解】解:(1)∵A(0,2),∴OA=2,過點B作BD⊥x軸,∵△OAB為等邊三角形,OA=2,∴OB=OA=2,OD=1,∴即,故答案為:;(2)證明:∵△OAB和ACP為等邊三角形,∴AC=AP,AB=OA,∠CAP=∠OAB=60°,∴∠BAP=∠OAC,∴(SAS);(3)如上圖,∵,∴∠ABP=∠AOC=90°,∴點P在過點B且與AB垂直的直線上.設(shè)直線AB的解析式為:,則,解得:,∴,∴設(shè)直線BP的解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論