版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、若函數(shù)y=(a﹣1)x2+2x+a2﹣1是二次函數(shù),則()A.a(chǎn)≠1 B.a(chǎn)≠﹣1 C.a(chǎn)=1 D.a(chǎn)=±12、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.23、如圖,在△ABC中,∠ABC=90°,tan∠BAC=,AD=2,BD=4,連接CD,則CD長的最大值是(
)A. B. C. D.2+24、如圖,點O是△ABC的內(nèi)心,若∠A=70°,則∠BOC的度數(shù)是()A.120° B.125° C.130° D.135°5、如圖,點M、N分別是正方形ABCD的邊BC、CD上的兩個動點,在運動過程中保持∠MAN=45°,連接EN、FM相交于點O,以下結(jié)論:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF?DE;④OM=OF()A.①②③ B.①②④ C.②③④ D.①②③④6、如圖,在△ABC中,點G為△ABC的重心,過點G作DE∥BC,分別交AB、AC于點D、E,則△ADE與四邊形DBCE的面積比為()A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖,AB是⊙O的直徑,CD是⊙O的切線,切點為D,CD與AB的延長線交于點C,∠A=30°,則下列結(jié)論中正確的是()A.AD=CD B.BD=BC C.AB=2BC D.∠ABD=60°2、下表中列出的是一個二次函數(shù)的自變量與函數(shù)的幾組對應(yīng)值:…013……6…下列各選項中,正確的是(
)A.函數(shù)圖象的開口向下 B.當(dāng)時,的值隨的增大而增大C.函數(shù)的圖象與軸無交點 D.這個函數(shù)的最小值小于3、如圖,已知拋物線.將該拋物線在x軸及x軸下方的部分記作C1,將C1沿x軸翻折構(gòu)成的圖形記作C2,將C1和C2構(gòu)成的圖形記作C3.關(guān)于圖形C3,給出的下列四個結(jié)論,正確的是(
)A.圖形C3恰好經(jīng)過4個整點(橫、縱坐標(biāo)均為整數(shù)的點)B.圖形C3上任意一點到原點的最大距離是1C.圖形C3的周長大于2πD.圖形C3所圍成區(qū)域的面積大于2且小于π4、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(
)A. B. C. D.5、已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.下列說法正確的是(
)A.函數(shù)解析式為I= B.當(dāng)R=9Ω時,I=4AC.蓄電池的電壓是13V D.當(dāng)I≤10A時,R≥3.6Ω6、如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,AD與CD相交于D,BC與CD相交于C,連接OD、OC,下列結(jié)論正確的是(
)A.AD+BC=CD B.∠DOC=90°C.S梯形ABCD=CD?OA D.OD2=DE?CD7、如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點G,連接AG交BE于點H,連接DH,下列結(jié)論中正確的是(
)
A.△ABG∽△FDG B.HD平分∠EHG C.AG⊥BED.S△HDG:S△HBG=tan∠DAGE.線段DH的最小值是2﹣2第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、已知點A(3,a)、B(-1,b)在函數(shù)的圖像上,那么a___b(填“>”或“=”或“<”)2、如圖,有長為24米的籬笆,一面利用墻(墻的最大可用長度為10米),圍成中間隔有一道籬笆的長方形花圃.設(shè)花圃的寬AB為x米,面積為S平方米.則S與x的函數(shù)關(guān)系式是____________,自變量x的取值范圍是____________.3、如圖所示,在△ABC中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若△ABC內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.4、如圖,在平面直角坐標(biāo)系中,一條過原點的直線與反比例函數(shù)的圖象x相交于兩點,若,,則該反比例函數(shù)的表達(dá)式為______.5、如圖,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直線互相垂直,的值為___.6、若函數(shù)圖像與x軸的兩個交點坐標(biāo)為和,則__________.7、在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點,頂點都是格點的三角形稱為格點三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點三角形,則該圖中所有與Rt△ABC相似的格點三角形中.面積最大的三角形的斜邊長是_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,在的正三角形的網(wǎng)格中,的三個頂點都在格點上.請按要求畫圖和計算:①僅用無刻度直尺;②保留作圖痕跡.(1)在圖1中,畫出的邊上的中線.(2)在圖2中,求的值.2、內(nèi)接于⊙O,在劣弧上,連交于,連,.(1)如圖1,求證:;(2)如圖2,平分,求證:;(3)如圖3,在(2)條件下,點在延長線上,連,于,,,,求⊙O半徑的長.3、如圖,拋物線y=a(x﹣2)2+3(a為常數(shù)且a≠0)與y軸交于點A(0,).(1)求該拋物線的解析式;(2)若直線y=kx(k≠0)與拋物線有兩個交點,交點的橫坐標(biāo)分別為x1,x2,當(dāng)x12+x22=10時,求k的值;(3)當(dāng)﹣4<x≤m時,y有最大值,求m的值.4、如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于、兩點,拋物線經(jīng)過、兩點;(1)求拋物線的解析式;(2)點為軸上一點,點為直線上一點,過作交軸于點,當(dāng)四邊形為菱形時,請直接寫出點坐標(biāo);(3)在(2)的條件下,且點在線段上時,將拋物線向上平移個單位,平移后的拋物線與直線交于點(點在第二象限),點為軸上一點,若,且符合條件的點恰好有2個,求的取值范圍.5、在平面直角坐標(biāo)系中,拋物線的頂點為P,且與y軸交于點A,與直線交于點B,C(點B在點C的左側(cè)).(1)求拋物線的頂點P的坐標(biāo)(用含a的代數(shù)式表示);(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點,記拋物線與線段AC圍成的封閉區(qū)域(不含邊界)為“W區(qū)域”.①當(dāng)時,請直接寫出“W區(qū)域”內(nèi)的整點個數(shù);②當(dāng)“W區(qū)域”內(nèi)恰有2個整點時,結(jié)合函數(shù)圖象,直接寫出a的取值范圍.6、如圖,在△ABC中,D,E分別是AC,AB上的點,∠ADE=∠B.△ABC的角平分線AF交DE于點G,交BC于點F.(1)求證:△ADG∽△ABF;(2)若,AF=6,求GF的長.-參考答案-一、單選題1、A【解析】【分析】利用二次函數(shù)定義進(jìn)行解答即可.【詳解】解:由題意得:a﹣1≠0,解得:a≠1,故選:A.【考點】本題主要考查了二次函數(shù)的定義,準(zhǔn)確計算是解題的關(guān)鍵.2、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關(guān)鍵是△ABD∽△DCE.3、B【解析】【分析】過點A作∠DAP=∠BAC,過點D作AD⊥DP交AP于點P,分別求出PD,PC,在△PDC中,利用三角形的三邊關(guān)系即可求出CD長的最大值.【詳解】解:如圖,過點A作∠DAP=∠BAC,過點D作AD⊥DP交AP于點P,∵∠ABC=90°,,∴,∴,∵AD=2,∴DP=1,∵∠DAP=∠BAC,∠ADP=∠ABC,∴△ADP∽△ABC,∴,∵∠DAB=∠DAP+∠PAB,∠PAC=∠PAB+∠BAC,∠DAP=∠BAC,∴∠DAB=∠PAC,,∴△ADB∽△APC,∴,∵,∴,∴,,在△PDC中,∵PD+PC>DC,PC?PD<DC,∴,當(dāng)D,P,C三點共線時,DC最大,最大值為,故選:B.【考點】本題考查了銳角三角函數(shù)的定義,相似三角形的判定和性質(zhì),勾股定理,三角形的三邊關(guān)系,構(gòu)造相似三角形是解題的關(guān)鍵.4、B【解析】【分析】利用內(nèi)心的性質(zhì)得∠OBC=∠ABC,∠OCB=∠ACB,再根據(jù)三角形內(nèi)角和計算出∠OBC+∠OCB=55°,然后再利用三角形內(nèi)角和計算∠BOC的度數(shù).【詳解】解:∵O是△ABC的內(nèi)心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故選:B.【考點】此題主要考查了三角形內(nèi)切圓與內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.5、A【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可證△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正確;由“SAS”可證△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正確;通過證明△DAE∽△BFA,可得,可證BC2=DE?BF,故③正確;通過證明點A,點B,點M,點F四點共圓,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可證MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④錯誤,即可求解.【詳解】解:將△ABM繞點A逆時針旋轉(zhuǎn)90°,得到△ADM′,將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴點M'在直線CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正確;∵將△ADF繞點A順時針旋轉(zhuǎn)90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正確;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴,又∵AB=AD=BC,∴BC2=DE?BF,故③正確;∵∠FBM=∠FAM=45°,∴點A,點B,點M,點F四點共圓,∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,同理可求∠AEN=90°,∠DAN=∠DEN,∴∠EOM=45°=∠EMO,∴EO=EM,∴MO=EO,∵∠BAM≠∠DAN,∴∠BFM≠∠DEN,∴EO≠FO,∴OM≠FO,故④錯誤,故選:A.【考點】本題考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識,添加恰當(dāng)輔助線構(gòu)造全等三角形是解題的關(guān)鍵.6、A【解析】【分析】連接AG并延長交BC于H,如圖,利用三角形重心的性質(zhì)得到AG=2GH,再證明△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)得到==,然后根據(jù)比例的性質(zhì)得到△ADE與四邊形DBCE的面積比.【詳解】解:連接AG并延長交BC于H,如圖,∵點G為△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE與四邊形DBCE的面積比=.故選:A.【考點】本題考查了三角形的重心與相似三角形的性質(zhì)與判定.重心到頂點的距離與重心到對邊中點的距離之比為2∶1.二、多選題1、ABCD【解析】【分析】連接OD,CD是⊙O的切線,可得CD⊥OD,由∠A=30°,可以得出∠ABD=60°,△ODB是等邊三角形,∠C=∠BDC=30°,再結(jié)合在直角三角形中300所對的直角邊等于斜邊的一半,繼而得到結(jié)論.【詳解】解:如圖,連接OD,∵CD是⊙O的切線,∴CD⊥OD,∴∠ODC=90°,又∵∠A=30°,∴∠ABD=60°,故選項D成立;∴△OBD是等邊三角形,∴∠DOB=∠ABD=60°,AB=2OB=2OD=2BD.∴∠C=∠BDC=30°,∴BD=BC,故選項B成立;∴AB=2BC,故選項C成立;∴∠A=∠C,∴DA=DC,故選項A成立;綜上所述,故選項ABCD均成立,故選:ABCD.【考點】本題考查了圓的有關(guān)性質(zhì)的綜合應(yīng)用,在本題中借用切線的性質(zhì),求得相應(yīng)角的度數(shù)是解題的關(guān)鍵.2、BD【解析】【分析】根據(jù)拋物線經(jīng)過點(0,-4),(3,-4)可得拋物線對稱軸為直線,由拋物線經(jīng)過點(-2,6)可得拋物線開口向上,進(jìn)而求解.【詳解】解:∵拋物線經(jīng)過點(0,-4),(3,-4),∴拋物線對稱軸為直線,∵拋物線經(jīng)過點(-2,6),∴當(dāng)x<時,y隨x增大而減小,∴拋物線開口向上,且跟x軸有交點,故A,C錯誤,不符合題意;∴x>時,y隨x增大而增大,故B正確,符合題意;由對稱性可知,在處取得最小值,且最小值小于-6.故D正確,符合題意.故選:BD.【考點】本題考查二次函數(shù)的圖象與性質(zhì),解題關(guān)鍵是掌握二次函數(shù)與方程的關(guān)系.3、ABD【解析】【分析】畫出圖象C3,以及以O(shè)為圓心,以1為半徑的圓,再作出⊙O內(nèi)接正方形,根據(jù)圖象即可判斷.【詳解】解:如圖所示,A.圖形C3恰好經(jīng)過(1,0)、(﹣1,0)、(0,1)、(0,﹣1)4個整點,故正確;B.由圖象可知,圖形C3上任意一點到原點的距離都不超過1,故正確;C.圖形C3的周長小于⊙O的周長,所以圖形C3的周長小于2π,故錯誤;D.圖形C3所圍成的區(qū)域的面積小于⊙O的面積,大于⊙O內(nèi)接正方形的面積,所以圖形C3所圍成的區(qū)域的面積大于2且小于π,故正確;故選:ABD.【考點】本題考查了二次函數(shù)的圖象與幾何變換,數(shù)形結(jié)合是解題的關(guān)鍵.4、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當(dāng)x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關(guān)系,熟練運用對稱軸的范圍求2a與b的關(guān)系,二次函數(shù)與方程及不等式之間的關(guān)系是解決本題的關(guān)鍵.5、BD【解析】【分析】設(shè)函數(shù)解析式為,將點(4,9)代入判斷A錯誤;將R=9Ω代入判斷B正確;由解析式判斷C錯誤;由函數(shù)性質(zhì)判斷D正確.【詳解】解:設(shè)函數(shù)解析式為,將點(4,9)代入,得,∴函數(shù)解析式為,故A錯誤;當(dāng)R=9Ω時,I=4A,故B正確;蓄電池的電壓是36V,故C錯誤;∵39>0,∴I隨R的增大而減小,∴當(dāng)I≤10A時,R≥3.6Ω,故D正確;故選:BD.【考點】此題考查了求反比例函數(shù)解析式,反比例函數(shù)的增減性,已知自變量求函數(shù)值的大小,正確掌握反比例函數(shù)的綜合知識是解題的關(guān)鍵.6、ABCD【解析】【分析】選項A:連接OE,利用切線長定理得到AD=ED,CE=CB,可得AD+BC=CD.選項B:OD、OC分別為角平分線,利用平角的定義及等式性質(zhì)得到∠COD為直角,選項C:由梯形的面積公式可知S梯形ABCD=(AD+BC)AB,再根據(jù)等量代換即可得出C選項正確.選項D:由上述分析可確定出三角形ODE與三角形COD相似,由相似得比例列出關(guān)系式,根據(jù)CD=DE+EC,等量代換得到AD+BC=CD,即可得到D正確.【詳解】解:連接OE,∵DA、DE為圓O的切線,∴AD=ED,∠AOD=∠EOD,∵CE、CB為圓O的切線,∴CE=CB,∠EOC=∠BOC,∴CD=DE+EC=AD+BC,∴選項A正確;∵∠AOD+∠DOE+∠EOC+∠BOC=180°,∴∠DOE+∠EOC=90°,即∠DOC=90°,∴選項B正確;∵S梯形ABCD=(AD+BC)AB,由上述解析可知CD=AD+BC,OA=AB,等量代換可得,S梯形ABCD=CD?OA∴選項C正確;∵OE⊥CD,∴∠OED=∠COD=90°,∵∠EDO=∠ODC,∴△DOE∽△DCO,∴,∴OD2=DE?CD,選項D正確;故答案為:ABCD.【考點】牢記切線的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.7、ACDE【解析】【分析】首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),相似三角形的判定與性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,‘∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠ABE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故選項C正確;同法可證:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故選項A正確;∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故選項D正確;取AB的中點O,連接OD、OH,∵正方形的邊長為4,∴AO=OH=×4=2,由勾股定理得,OD==2,∵DH≥OD-OH,∴O、D、H三點共線時,DH最小,∴DH最小=2-2.故選項E正確,無法證明DH平分∠EHG,故選項B錯誤,故選項ACDE正確,故選:ACDE.【考點】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,三角函數(shù),勾股定理、等高模型等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,難點在于選項E作輔助線并確定出DH最小時的情況.三、填空題1、<【解析】【分析】把點A(3,a),B(-1,b)代入函數(shù)上求出a、b的值,再進(jìn)行比較即可.【詳解】把點A(3,a)代入函數(shù)可得,a=-1;把點B(-1,b)代入函數(shù)可得,b=3;∵3>-1,即a<b.故答案為:<.【考點】本題比較簡單,考查了反比例函數(shù)圖象上點的坐標(biāo)特點,即反比例函數(shù)圖象上點的坐標(biāo)一定適合此函數(shù)的解析式.2、
S=-3x2+24x
≤x<8【解析】【詳解】可先用籬笆的長表示出BC的長,然后根據(jù)矩形的面積=長×寬,得出S與x的函數(shù)關(guān)系式,并根據(jù)墻的最大可用長度為10米,列不等式組即可得出自變量的取值范圍.解:由題可知,花圃的寬AB為x米,則BC為(24?3x)米.∴S=x(24?3x)=?3x2+24x.∵0<24?3x≤10,解得≤x<8,故答案為S=-3x2+24x,≤x<8.3、
【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長;(2)設(shè)正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設(shè)小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會利用三角形相似中的相似比來得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.4、y=.【解析】【分析】由正比例函數(shù)與反比例函數(shù)的兩個交點關(guān)于原點對稱,可得m2-7=2,由點A在第三象限可求m的值,即可求點A坐標(biāo),代入解析式可求解.【詳解】解:∵一條過原點的直線與反比例函數(shù)的圖象相交于A、B兩點,∴點A與點B關(guān)于原點對稱,∴m2-7=2,∴m=±3,∵點A在第三象限,∴m<0,∴m=-3,∴點A(-3,-2),∵點A在反比例函數(shù)的圖象上,∴k=-3×(-2)=6,∴反比例函數(shù)的表達(dá)式為y=,故答案為:y=.【考點】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,掌握正比例函數(shù)與反比例函數(shù)的兩個交點關(guān)于原點對稱是本題的關(guān)鍵.5、【解析】【分析】延長AD交GB于點M,交BC的延長線于點H,則AHBH,由線段垂直平分線的性質(zhì)得出GA=GB,GD=GC,由SAS證明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先證出∠AGB=∠DGC,由,證出△AGB△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出,即可得出的值.【詳解】解:延長AD交GB于點M,交BC的延長線于點H,如圖所示:則AHBH,GE是AB的垂直平分線,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考點】本題是相似三角形綜合題目,考查了線段垂直平分線的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、銳角三角函數(shù)等知識,本題難度較大,綜合性強(qiáng),解題的關(guān)鍵是通過作輔助線綜合運用全等三角形和相似三角形的性質(zhì).6、-2【解析】【分析】根據(jù)二次函數(shù)圖象對稱軸所在的直線與x軸的交點的坐標(biāo),即為它的圖象與x軸兩交點之間線段中點的橫坐標(biāo),即可求得.【詳解】解:函數(shù)圖像與x軸的兩個交點坐標(biāo)為和由對稱軸所在的直線為:解得故答案為:-2.【考點】本題考查了二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法,熟練掌握和運用二次函數(shù)的性質(zhì)及中點坐標(biāo)的求法是解決本題的關(guān)鍵.7、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時畫出的直角三角形為等腰直角三角形,從而畫不出端點都在格點且長為8的線段,故最短直角邊長應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點】本題考查了作圖-應(yīng)用與設(shè)計、相似三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.四、解答題1、(1)答案見解析;(2).【解析】【分析】(1)利用平行四邊形的性質(zhì)分別作出AB、AC的中點E、F,再利用三角形重心的性質(zhì)即可作出△ABC的BC邊上的中線AD;(2)利用平行線的性質(zhì)可得∠AEC=∠FDC,再利用菱形及等邊三角形的性質(zhì)可求得DH、CH的長,繼而求得CD的長,從而求得答案.【詳解】(1)如圖,線段AD就是所求作的中線;(2)如圖:在的正三角形的網(wǎng)格中,∵M(jìn)N∥AB∥FD,∴∠AEC=∠FDC,∵四邊形CMGN為菱形,且邊長為5,∴CG⊥MN,∴CG⊥FD,,∴CG=2OG=5,∵△GFD為等邊三角形,且邊長為2,同理:HG=,∴在Rt△CDH中,∠CHD=90,DH=1,CH=CG-HG=4,∴,即,∴,∴.【考點】本題考查了作圖-應(yīng)用與設(shè)計作圖,菱形的性質(zhì)、等邊三角形的性質(zhì),平行線的性質(zhì),勾股定理的應(yīng)用.首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.2、(1)見解析;(2)見解析;(3)【解析】【分析】(1)如圖,連接,由和分別是弧所對的圓心角和圓周角,利用圓周角定理可得,由,可得,OC平分,由,利用三線合一可證即可.
(2)如圖,過點作于,由平分,,,可得,,,由勾股定理得,,可求即可.(3)由,可得,由,可得,由,,可得,由平分,可得,由,可得,可證,可得,即,可求,由勾股定理,可求即可得到答案.【詳解】證明(1)如圖,連接,∵和分別是弧所對的圓心角和圓周角,∴,∵,∴,∴,∵,∴.
(2)如圖,過點作于,∵平分,,,∴,,,
∵,,∴,∴.
(3)∵,∴,∵,∴,
∵,,∴,∴,∵平分,∴,∵,∴,∴,
∵,∴,∴,∵,∴,∴,∵,,∴,解得:,(舍去),∴,∴,∴,即半徑的長是.【考點】本題考查圓周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì),掌握圓周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì)是解題關(guān)鍵.3、(1);(2);(3)【解析】【分析】(1)把代入拋物線的解析式,解方程求解即可;(2)聯(lián)立兩個函數(shù)的解析式,消去得:再利用根與系數(shù)的關(guān)系與可得關(guān)于的方程,解方程可得答案;(3)先求解拋物線的對稱軸方程,分三種情況討論,當(dāng)<<結(jié)合函數(shù)圖象,利用函數(shù)的最大值列方程,再解方程即可得到答案.【詳解】解:(1)把代入中,拋物線的解析式為:(2)聯(lián)立一次函數(shù)與拋物線的解析式得:整理得:∵x1+x2=4-3k,x1?x2=-3,∴x12+x22=(4-3k)2+6=10,解得:∴(3)∵函數(shù)的對稱軸為直線x=2,當(dāng)m<2時,當(dāng)x=m時,y有最大值,=-(m-2)2+3,解得m=±,∴m=-,當(dāng)m≥2時,當(dāng)x=2時,y有最大值,∴=3,∴m=,綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學(xué)院實習(xí)生實習(xí)記錄匯編
- 手術(shù)室設(shè)備操作技能考核題庫
- 農(nóng)產(chǎn)品質(zhì)量安全檢測技術(shù)及管理要求
- 幼兒教師德育工作心得體會兩篇
- 數(shù)據(jù)分析項目案例教學(xué)設(shè)計
- 電子產(chǎn)品質(zhì)量抽檢報告模板
- HR招聘面試技巧及測評模板
- 快遞行業(yè)派送員管理考核標(biāo)準(zhǔn)
- 護(hù)理科室月度工作匯報范本
- 美術(shù)課程閱讀與教學(xué)計劃范文
- 醫(yī)療機(jī)構(gòu)醫(yī)保數(shù)據(jù)共享管理制度
- 人工智能通識教程 第2版 課件 第12章 GPT-大語言模型起步
- 大疆無人機(jī)租賃合同協(xié)議書
- 網(wǎng)絡(luò)新聞評論智慧樹知到期末考試答案章節(jié)答案2024年西南交通大學(xué)
- FreeCAD從入門到綜合實戰(zhàn)
- 藥房藥品安全管理月檢查表
- 全國職業(yè)院校技能大賽(中職組) 化工生產(chǎn)技術(shù)賽項備考試題庫-上(單選題部分)
- 下潘格莊金礦開發(fā)前景分析校正版
- 運輸合同普通版
- 某燃?xì)鉄犭娪邢薰驹O(shè)備招標(biāo)文件
- 掃路車使用說明書-通用
評論
0/150
提交評論