中考數(shù)學總復習《 圓》通關(guān)考試題庫附答案詳解【研優(yōu)卷】_第1頁
中考數(shù)學總復習《 圓》通關(guān)考試題庫附答案詳解【研優(yōu)卷】_第2頁
中考數(shù)學總復習《 圓》通關(guān)考試題庫附答案詳解【研優(yōu)卷】_第3頁
中考數(shù)學總復習《 圓》通關(guān)考試題庫附答案詳解【研優(yōu)卷】_第4頁
中考數(shù)學總復習《 圓》通關(guān)考試題庫附答案詳解【研優(yōu)卷】_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學總復習《圓》通關(guān)考試題庫考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A.6π﹣ B.6π﹣9 C.12π﹣ D.2、已知平面內(nèi)有和點,,若半徑為,線段,,則直線與的位置關(guān)系為(

)A.相離 B.相交 C.相切 D.相交或相切3、“圓材埋壁”是我國古代著名數(shù)學著作《九章算術(shù)》中的一個問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學語言表述是:如圖所示,CD為⊙O的直徑,弦AB⊥CD,垂足為E,CE為1寸,AB為10寸,求直徑CD的長.依題意,CD長為(

)A.寸 B.13寸 C.25寸 D.26寸4、如圖,⊙O的半徑為5,AB為弦,點C為的中點,若∠ABC=30°,則弦AB的長為()A. B.5 C. D.55、如圖所示,MN為⊙O的弦,∠N=52°,則∠MON的度數(shù)為(

)A.38° B.52° C.76° D.104°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,圓錐的母線長為10cm,高為8cm,則該圓錐的側(cè)面展開圖(扇形)的弧長為_____cm.(結(jié)果用π表示)2、如圖,四邊形是的外切四邊形,且,,則四邊形的周長為__________.3、如圖,在平面直角坐標系中,點A(0,1)、B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸于點C、D,則CD的長是____.4、如圖,把一個圓錐沿母線OA剪開,展開后得到扇形AOC,已知圓錐的高h為12cm,OA=13cm,則扇形AOC中的長是_____cm(計算結(jié)果保留π).5、如圖,四邊形ABCD為⊙O的內(nèi)接正四邊形,△AEF為⊙O的內(nèi)接正三角形,連接DF.若DF恰好是同圓的一個內(nèi)接正多邊形的一邊,則這個正多邊形的邊數(shù)為_____.三、解答題(5小題,每小題10分,共計50分)1、在中,,,,已知⊙O經(jīng)過點C,且與相切于點D.(1)在圖中作出⊙O;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)(2)若點D是邊上的動點,設(shè)⊙O與邊、分別相交于點E、F,求的最小值.2、已知PA,PB分別與⊙O相切于點A,B,∠APB=80°,C為⊙O上一點.(1)如圖①,求∠ACB的大?。?2)如圖②,AE為⊙O的直徑,AE與BC相交于點D.若AB=AD,求∠EAC的大?。?、如圖,,點在上,且,以為圓心,為半徑作圓.(1)討論射線與公共點個數(shù),并寫出對應(yīng)的取值范圍;(2)若是上一點,,當時,求線段與的公共點個數(shù).4、已知,正方形ABCD中,M、N分別為AD邊上的兩點,連接BM、CN并延長交于一點H,連接AH,E為BM上一點,連接AE、CE,∠ECH+∠MNH=90°.(1)如圖1,若E為BM的中點,且DM=3AM,,求線段AB的長.(2)如圖2,若點F為BE中點,點G為CF延長線上一點,且EG//BC,CE=GE,求證:.(3)如圖3,在(1)的條件下,點P為線段AD上一動點,連接BP,作CQ⊥BP于Q,將△BCQ沿BC翻折得到△BCl,點K、R分別為線段BC、Bl上兩點,且BI=3RI,BC=4BK,連接CR、IK交于點T,連接BT,直接寫出△BCT面積的最大值.5、在平面直角坐標系中,平行四邊形的頂點A,D的坐標分別是,其中.(1)若點B在x軸的上方,①,求的長;②,且.證明:四邊形是菱形;(2)拋物線經(jīng)過點B,C.對于任意的,當a,m的值變化時,拋物線會不同,記其中任意兩條拋物線的頂點為(與不重合),則命題“對所有的a,b,當時,一定不存在的情形.”是否正確?請說明理由.-參考答案-一、單選題1、A【解析】【分析】連接OD,如圖,利用折疊性質(zhì)得由弧AD、線段AC和CD所圍成的圖形的面積等于陰影部分的面積,AC=OC,則OD=2OC=6,CD=3,從而得到∠CDO=30°,∠COD=60°,然后根據(jù)扇形面積公式,利用由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD-S△COD,進行計算即可.【詳解】解:連接OD,如圖,∵扇形紙片折疊,使點A與點O恰好重合,折痕為CD,∴AC=OC,∴OD=2OC=6,∴CD=,∴∠CDO=30°,∠COD=60°,∴由弧AD、線段AC和CD所圍成的圖形的面積=S扇形AOD﹣S△COD=﹣=6π﹣,∴陰影部分的面積為6π﹣.故選A.【考點】本題考查了扇形面積的計算:陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.記住扇形面積的計算公式.也考查了折疊性質(zhì).2、D【解析】【分析】根據(jù)點與圓的位置關(guān)系的判定方法進行判斷.【詳解】解:∵⊙O的半徑為2cm,線段OA=3cm,線段OB=2cm,即點A到圓心O的距離大于圓的半徑,點B到圓心O的距離等于圓的半徑,∴點A在⊙O外.點B在⊙O上,∴直線AB與⊙O的位置關(guān)系為相交或相切,故選:D.【考點】本題考查了直線與圓的位置關(guān)系,正確的理解題意是解題的關(guān)鍵.3、D【解析】【分析】連結(jié)AO,根據(jù)垂徑定理可得:,然后設(shè)⊙O半徑為R,則OE=R-1.再由勾股定理,即可求解.【詳解】解:連結(jié)AO,∵CD為直徑,CD⊥AB,∴.設(shè)⊙O半徑為R,則OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴R2=52+(R-1)2,∴

R=13,∴

CD=2R=26(寸).故選:D【考點】本題主要考查了垂徑定理,勾股定理,熟練掌握垂徑定理是解題的關(guān)鍵.4、D【解析】【分析】連接OC、OA,利用圓周角定理得出∠AOC=60°,再利用垂徑定理得出AB即可.【詳解】連接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB為弦,點C為的中點,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故選D.【考點】此題考查圓周角定理,關(guān)鍵是利用圓周角定理得出∠AOC=60°.5、C【解析】【分析】根據(jù)半徑相等得到OM=ON,則∠M=∠N=52°,然后根據(jù)三角形內(nèi)角和定理計算∠MON的度數(shù).【詳解】∵OM=ON,∴∠M=∠N=52°,∴∠MON=180°-2×52°=76°.故選C.【考點】本題考查了圓的認識:掌握與圓有關(guān)的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).二、填空題1、【解析】【分析】先求出圓錐的底面半徑,然后根據(jù)圓錐的展開圖為扇形,結(jié)合圓周長公式進行求解即可.【詳解】設(shè)底面圓的半徑為rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案為12π.【考點】本題考查了圓錐的計算,解答本題的關(guān)鍵是掌握圓錐側(cè)面展開圖是個扇形,要熟練掌握扇形與圓錐之間的聯(lián)系.2、48【解析】【分析】根據(jù)切線長定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長公式計算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長=AD+BC+AB+CD=24+24=48,故答案為:48.【考點】本題考查了切線長定理,掌握從圓外一點引圓的兩條切線,它們的切線長相等是解題的關(guān)鍵.3、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結(jié)果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關(guān)鍵.4、10π【解析】【分析】根據(jù)的長就是圓錐的底面周長即可求解.【詳解】解:∵圓錐的高h為12cm,OA=13cm,∴圓錐的底面半徑為=5cm,∴圓錐的底面周長為10πcm,∴扇形AOC中的長是10πcm,故答案為10π.【考點】本題考查了圓錐的計算,解題的關(guān)鍵是了解圓錐的底面周長等于展開扇形的弧長.5、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計算⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設(shè)這個正多邊形為n邊形,∵AD,AF分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內(nèi)接一個正十二邊形的一邊.故答案為:12.【考點】本題考查了正多邊形與圓:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓;熟練掌握正多邊形的有關(guān)概念.三、解答題1、(1)見詳解.(2)【解析】【分析】(1)連接CD,用尺規(guī)作圖,作線段CD的垂直平分線,找到線段CD的中點O,然后以O(shè)為圓心,為半徑主要作圓即為所作圓.(2)過點C作,根據(jù)點到直線的距離,垂線段最短可知,點CD為圓的直徑時,此時圓的直徑最短,根據(jù)面積法可得出因為EF也為圓的直徑,所以可得出EF最最小值為(1)如圖所示,為所作圓.(2)如圖,作于點D,當CD為過的圓心點O時,此時圓的直徑最短∴EF為的直徑,∴此時EF的長為故EF的最小值為:【考點】本題主要考查了尺規(guī)作圖,勾股定理,三角形面積求斜邊上的高,垂線段最短等知識點的應(yīng)用,熟練掌握點到直線的距離垂線段最短這性質(zhì)定理是解此題的關(guān)鍵.2、(1)∠ACB=50°(2)∠EAC=20°【解析】【分析】(1)連接OA、OB,根據(jù)切線性質(zhì)和∠P=80°,得到∠AOB=100°,根據(jù)圓周角定理得到∠C=50°;(2)連接CE,證明∠BCE=∠BAE=40°,根據(jù)等腰三角形性質(zhì)得到∠ABD=∠ADB=70°,由三角形外角性質(zhì)得到∠EAC=20°.(1)連接OA、OB,

∵PA,PB是⊙O的切線,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣80°=100°,由圓周角定理得,∠ACB=∠AOB=50°;(2)連接CE,∵AE為⊙O的直徑,∴∠ACE=90°,∵∠ACB=50°,∴∠BCE=90°﹣50°=40°,∴∠BAE=∠BCE=40°,∵AB=AD,∴∠ABD=∠ADB=70°,∴∠EAC=∠ADB﹣∠ACB=20°.【考點】本題考查了圓的切線,圓周角,等腰三角形,三角形外角,熟練掌握圓的切線性質(zhì),圓周角定理及推論,等腰三角形的性質(zhì),三角形外角性質(zhì),是解決問題的關(guān)鍵.3、(1)見解析

(2)0個【解析】【分析】(1)作于點,由,可得點到射線的距離,根據(jù)直線與圓的位置關(guān)系的定義即可判斷射線OA與圓M的公共點個數(shù);(2)連接.可得,由可得,得到,故當時,可判斷線段與的公共點個數(shù).【詳解】(1)如圖,作于點.,∴點到射線的距離.∴當時,與射線只有一個公共點;當時,與射線沒有公共點;當時,與射線有兩個公共點;當時,與射線只有一個公共點.(2)如圖,連接..,.∴當時,線段與的公共點個數(shù)為0.【考點】本題主要考查了直線與圓的位置關(guān)系,根據(jù)圓心到直線的距離判斷位置關(guān)系是解題的關(guān)鍵.4、(1)4(2)證明見解析(3)【解析】【分析】(1)由正方形ABCD的性質(zhì),可得到△ABM為直角三角形,再由E為BM中點,得到BM=2AE,最后由勾股定理求得AB的長度;(2)過點A作AY⊥BH于點Y,由EG∥BC,CE=GE,F(xiàn)為BE中點,可得△GEF≌△CBF,從而得到△BCE為等腰三角形,再根據(jù)角的關(guān)系,易得∠ECG+∠ECH=∠BCD=45°,得到△HFC為等腰直角三角形,再根據(jù)△ABY≌△BCF,得到BM=CF,AY=BF,從而轉(zhuǎn)化得到結(jié)論;(3)當P、D重合時得到最大面積,以B為原點建立直角坐標系,求出坐標和表達式,聯(lián)立方程組求解,即可得出答案.(1)解:∵四邊形ABCD為正方形,且DM=3AM,∴∠BAM=90°,AD=AB=4AM,∴△ABM為直角三角形,∵E為BM的中點,,∴BM=2AE=,在Rt△ABM中,設(shè)AM=x,則AB=4x,∴,解得,∴AB=4;(2)過點A作AY⊥BH于點Y,∵EG//BC,CE=GE,∴∠G=∠BCG=∠ECG,∵F為BE的中點,∴△GEF≌△CBF(AAS),∴GE=BC,△BCE為等腰三角形,∴CF⊥BE,∠CFE=90°;∵∠ECH+∠MNH=90°,∠MNH=∠CND,∠CND+∠NCD=90°,∴∠ECH=∠NCD,∴∠ECG+∠ECH=∠BCD=45°,∴△HFC為等腰直角三角形,∴CF=HF;∵∠ABE+∠CBE=90°,∠CBE+∠BCF=90°,∴∠ABE=∠BCF,∵AB=BC,∠AYB=∠BFC=90°,∴△ABY≌△BCF(AAS),∴BY=CF,AY=BF,∴BY=HF∴BY-FY=HF-FY∴BF=HY=AY,∴△AHY是等腰直角三角形,∴,∴,∴;(3)∵∠BQC=90°,∴點Q在以BC為直徑的半圓弧上運動,當P點與D點重合時,此時Q點離BC最遠,∴△QBC和△IBC面積最大,∴此時△BCT面積最大;∵CQ⊥BP,∴△CBQ為等腰直角三角形,由翻折可得,△CBI為等腰直角三角形,建

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論