2025-2026學年江蘇省東??h數(shù)學高三第一學期期末達標檢測模擬試題_第1頁
2025-2026學年江蘇省東??h數(shù)學高三第一學期期末達標檢測模擬試題_第2頁
2025-2026學年江蘇省東??h數(shù)學高三第一學期期末達標檢測模擬試題_第3頁
2025-2026學年江蘇省東海縣數(shù)學高三第一學期期末達標檢測模擬試題_第4頁
2025-2026學年江蘇省東??h數(shù)學高三第一學期期末達標檢測模擬試題_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025-2026學年江蘇省東??h數(shù)學高三第一學期期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.2.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.3.已知函數(shù)(e為自然對數(shù)底數(shù)),若關于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為()A. B. C. D.4.復數(shù)的共軛復數(shù)為()A. B. C. D.5.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.86.已知函數(shù),當時,恒成立,則的取值范圍為()A. B. C. D.7.已知是平面內互不相等的兩個非零向量,且與的夾角為,則的取值范圍是()A. B. C. D.8.設函數(shù)在上可導,其導函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.9.我國古代數(shù)學名著《九章算術》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺10.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或11.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.12.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知是偶函數(shù),則的最小值為___________.14.展開式中項系數(shù)為160,則的值為______.15.已知,滿足約束條件,則的最小值為______.16.在數(shù)列中,,則數(shù)列的通項公式_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱臺中,側面與側面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.18.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,平面平面,點為棱的中點.(Ⅰ)在棱上是否存在一點,使得平面,并說明理由;(Ⅱ)當二面角的余弦值為時,求直線與平面所成的角.19.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設函數(shù)的極值點為,當變化時,點構成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.20.(12分)的內角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.21.(12分)為了響應國家號召,促進垃圾分類,某校組織了高三年級學生參與了“垃圾分類,從我做起”的知識問卷作答隨機抽出男女各20名同學的問卷進行打分,作出如圖所示的莖葉圖,成績大于70分的為“合格”.(Ⅰ)由以上數(shù)據(jù)繪制成2×2聯(lián)表,是否有95%以上的把握認為“性別”與“問卷結果”有關?男女總計合格不合格總計(Ⅱ)從上述樣本中,成績在60分以下(不含60分)的男女學生問卷中任意選2個,記來自男生的個數(shù)為,求的分布列及數(shù)學期望.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知,均為正數(shù),且.證明:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:本題考查正弦定理的應用,余弦函數(shù)的性質的應用,屬于中檔題.2.C【解析】

利用建系,假設長度,表示向量與,利用向量的夾角公式,可得結果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設,所以則所以所以故選:C本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎題.3.A【解析】

若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導數(shù)求出的最小值,分別畫出與的圖象,結合圖象可得.【詳解】解:,∴,設,∴,當時,,函數(shù)單調遞增,當時,,函數(shù)單調遞減,∴,當時,,當,,函數(shù)恒過點,分別畫出與的圖象,如圖所示,,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,∴且,即,且∴,故實數(shù)m的最大值為,故選:A本題考查考查了不等式恒有一正整數(shù)解問題,考查了利用導數(shù)研究函數(shù)的單調性,考查了數(shù)形結合思想,考查了數(shù)學運算能力.4.D【解析】

直接相乘,得,由共軛復數(shù)的性質即可得結果【詳解】∵∴其共軛復數(shù)為.故選:D熟悉復數(shù)的四則運算以及共軛復數(shù)的性質.5.C【解析】

設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經(jīng)過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數(shù)的值.本題難度一般.6.A【解析】

分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構造函數(shù),結合的單調性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調遞增,在上單調遞減,從而,故.故選:A.本題考查了不等式恒成立問題,利用函數(shù)單調性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.7.C【解析】試題分析:如下圖所示,則,因為與的夾角為,即,所以,設,則,在三角形中,由正弦定理得,所以,所以,故選C.考點:1.向量加減法的幾何意義;2.正弦定理;3.正弦函數(shù)性質.8.B【解析】

由題意首先確定導函數(shù)的符號,然后結合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導,其導函數(shù)為,且函數(shù)在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:根據(jù)函數(shù)取得極大值,判斷導函數(shù)在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.9.A【解析】

根據(jù)三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設球半徑為,則,所以外接球的表面積,故選:A.本題考查求幾何體的外接球的表面積,關鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.10.A【解析】

根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:

①當焦點在x軸上時有:②當焦點在y軸上時有:∴求得雙曲線的離心率2或.

故選:A.本小題主要考查直線與圓的位置關系、雙曲線的簡單性質等基礎知識,考查運算求解能力,考查數(shù)形結合思想.解題的關鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.11.D【解析】

過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.12.B【解析】

先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據(jù)條件與結論中參數(shù)的取值范圍進行判斷.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

由偶函數(shù)性質可得,解得,再結合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2考查函數(shù)的奇偶性、基本不等式,屬于基礎題14.-2【解析】

表示該二項式的展開式的第r+1項,令其指數(shù)為3,再代回原表達式構建方程求得答案.【詳解】該二項式的展開式的第r+1項為令,所以,則故答案為:本題考查由二項式指定項的系數(shù)求參數(shù),屬于簡單題.15.2【解析】

作出可行域,平移基準直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準直線到處時,取得最小值為.故答案為:本小題主要考查線性規(guī)劃求最值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.16.【解析】

由題意可得,又,數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,對分奇數(shù)和偶數(shù)兩種情況,分別求出,從而得到數(shù)列的通項公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數(shù)列的奇數(shù)項為首項為1,公差為2的等差數(shù)列,∴當為奇數(shù)時,,當為偶數(shù)時,則為奇數(shù),∴,∴數(shù)列的通項公式,故答案為:.本題考查求數(shù)列的通項公式,解題關鍵是由已知遞推關系得出,從而確定數(shù)列的奇數(shù)項成等差數(shù)列,求出通項公式后再由已知求出偶數(shù)項,要注意結果是分段函數(shù)形式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設,則求得平面的法向量為,設平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內,過點作的垂線,如圖建立空間直角坐標系,不妨設,則,故點,;設平面的法向量為,則有:;設平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.18.(1)見解析(2)【解析】

(Ⅰ)取的中點,連結、,得到故且,進而得到,利用線面平行的判定定理,即可證得平面.(Ⅱ)以為坐標原點建立如圖空間直角坐標系,設,求得平面的法向量為,和平面的法向量,利用向量的夾角公式,求得,進而得到為直線與平面所成的角,即可求解.【詳解】(Ⅰ)在棱上存在點,使得平面,點為棱的中點.理由如下:取的中點,連結、,由題意,且,且,故且.所以,四邊形為平行四邊形.所以,,又平面,平面,所以,平面.(Ⅱ)由題意知為正三角形,所以,亦即,又,所以,且平面平面,平面平面,所以平面,故以為坐標原點建立如圖空間直角坐標系,設,則由題意知,,,,,,設平面的法向量為,則由得,令,則,,所以取,顯然可取平面的法向量,由題意:,所以.由于平面,所以在平面內的射影為,所以為直線與平面所成的角,易知在中,,從而,所以直線與平面所成的角為.本題考查了立體幾何中的面面垂直的判定和直線與平面所成角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,通過嚴密推理,明確角的構成,著重考查了分析問題和解答問題的能力.19.(1);(2)證明見解析【解析】

(1)由恒成立,可得恒成立,進而構造函數(shù),求導可判斷出的單調性,進而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進而可得,即曲線的方程為,進而只需證明對任意,方程有唯一解,然后構造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點,即可證明結論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調遞增,又,時,;時,,即時,;時,,時,單調遞減;時,單調遞增,時,取最小值,.(2)證明:由,令,由,結合二次函數(shù)性質可知,存在唯一的,使得,故存在唯一的極值點,則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當時,恒成立,在上單調遞增.,,,存在滿足時,使得.又單調遞增,所以為唯一解.②當時,二次函數(shù),滿足,則恒成立,在上單調遞增.,,存在使得,又在上單調遞增,為唯一解.③當時,二次函數(shù),滿足,此時有兩個不同的解,不妨設,,,列表如下:00↗極大值↘極小值↗由表可知,當時,的極大值為.,,,,,..下面來證明,構造函數(shù),則,當時,,此時單調遞增,,時,,,故成立.,存在,使得.又在單調遞增,為唯一解.所以,對任意,方程有唯一解,即過原點任意的直線與曲線有且僅有一個公共點.本題考查利用導數(shù)研究函數(shù)單調性的應用,考查不等式恒成立問題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論