2025年廣西桂林,百色,梧州,北海,崇左五市數(shù)學高三上期末監(jiān)測模擬試題_第1頁
2025年廣西桂林,百色,梧州,北海,崇左五市數(shù)學高三上期末監(jiān)測模擬試題_第2頁
2025年廣西桂林,百色,梧州,北海,崇左五市數(shù)學高三上期末監(jiān)測模擬試題_第3頁
2025年廣西桂林,百色,梧州,北海,崇左五市數(shù)學高三上期末監(jiān)測模擬試題_第4頁
2025年廣西桂林,百色,梧州,北海,崇左五市數(shù)學高三上期末監(jiān)測模擬試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025年廣西桂林,百色,梧州,北海,崇左五市數(shù)學高三上期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)是定義在上的偶函數(shù),當時,,則,,的大小關系為()A. B. C. D.2.已知函數(shù),若關于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.3.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.4.已知雙曲線的焦距為,過左焦點作斜率為1的直線交雙曲線的右支于點,若線段的中點在圓上,則該雙曲線的離心率為()A. B. C. D.5.已知集合,定義集合,則等于()A. B.C. D.6.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.7.已知函數(shù),則方程的實數(shù)根的個數(shù)是()A. B. C. D.8.某工廠一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中錯誤的是().A.收入最高值與收入最低值的比是B.結余最高的月份是月份C.與月份的收入的變化率與至月份的收入的變化率相同D.前個月的平均收入為萬元9.設是虛數(shù)單位,,,則()A. B. C.1 D.210.某中學2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該??忌纳龑W情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達線人數(shù)減少C.與2016年相比,2019年二本達線人數(shù)增加了0.3倍D.2016年與2019年藝體達線人數(shù)相同11.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.112.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當?shù)氐拇逦瘯@三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.14.某班有學生52人,現(xiàn)將所有學生隨機編號,用系統(tǒng)抽樣方法,抽取一個容量為4的樣本,已知5號、31號、44號學生在樣本中,則樣本中還有一個學生的編號是__________.15.已知數(shù)列遞增的等比數(shù)列,若,,則______.16.設實數(shù)滿足約束條件,則的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.18.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,,求數(shù)列的前項和.19.(12分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.20.(12分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.21.(12分)已知函數(shù)(1)求函數(shù)在處的切線方程(2)設函數(shù),對于任意,恒成立,求的取值范圍.22.(10分)如圖,在三棱柱中,平面平面,側面為平行四邊形,側面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.本題考查函數(shù)的奇偶性的應用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調性比較大小,屬于中檔題.2.D【解析】

討論,,三種情況,求導得到單調區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當時,,故,函數(shù)在上單調遞增,在上單調遞減,且;當時,;當時,,,函數(shù)單調遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.本題考查了利用導數(shù)求函數(shù)的零點問題,意在考查學生的計算能力和應用能力.3.C【解析】

根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C本題主要考查圓的方程,直線與圓的位置關系以及二次函數(shù)的性質,還考查了運算求解的能力,屬于中檔題.4.C【解析】

設線段的中點為,判斷出點的位置,結合雙曲線的定義,求得雙曲線的離心率.【詳解】設線段的中點為,由于直線的斜率是,而圓,所以.由于是線段的中點,所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關系,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.5.C【解析】

根據(jù)定義,求出,即可求出結論.【詳解】因為集合,所以,則,所以.故選:C.本題考查集合的新定義運算,理解新定義是解題的關鍵,屬于基礎題.6.D【解析】

首先判斷循環(huán)結構類型,得到判斷框內(nèi)的語句性質,然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結果與循環(huán)次數(shù)以及的關系,最終得出選項.【詳解】經(jīng)判斷此循環(huán)為“直到型”結構,判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3)注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4)處理循環(huán)結構的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.7.D【解析】

畫出函數(shù),將方程看作交點個數(shù),運用圖象判斷根的個數(shù).【詳解】畫出函數(shù)令有兩解,則分別有3個,2個解,故方程的實數(shù)根的個數(shù)是3+2=5個故選:D本題綜合考查了函數(shù)的圖象的運用,分類思想的運用,數(shù)學結合的思想判斷方程的根,難度較大,屬于中檔題.8.D【解析】由圖可知,收入最高值為萬元,收入最低值為萬元,其比是,故項正確;結余最高為月份,為,故項正確;至月份的收入的變化率為至月份的收入的變化率相同,故項正確;前個月的平均收入為萬元,故項錯誤.綜上,故選.9.C【解析】

由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.本題考查了復數(shù)的運算,考查了復數(shù)相等的涵義.對于復數(shù)的運算類問題,易錯點是把當成進行運算.10.A【解析】

設2016年高考總人數(shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設2016年高考總人數(shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年藝體達線人數(shù),故D錯誤.故選:A.本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.11.B【解析】

根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.12.B【解析】

將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關系式結合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設,由三角函數(shù)定義可知,因為,則,所以由同角三角函數(shù)關系式可得,所以故答案為:.本題考查了三角函數(shù)定義,同角三角函數(shù)關系式的應用,余弦差角公式的應用,屬于中檔題.14.18【解析】

根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,故可根據(jù)其中三個個體的編號求出另一個個體的編號.【詳解】解:根據(jù)系統(tǒng)抽樣的定義和方法,所抽取的4個個體的編號成等差數(shù)列,已知其中三個個體的編號為5,31,44,故還有一個抽取的個體的編號為18,故答案為:18本題主要考查系統(tǒng)抽樣的定義和方法,屬于簡單題.15.【解析】

,建立方程組,且,求出,進而求出的公比,即可求出結論.【詳解】數(shù)列遞增的等比數(shù)列,,,解得,所以的公比為,.

故答案為:.本題考查等比數(shù)列的性質、通項公式,屬于基礎題.16.【解析】

試題分析:作出不等式組所表示的平面區(qū)域如圖,當直線過點時,最大,且考點:線性規(guī)劃.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)2;(2);(3)證明見解析【解析】

(1)先求出函數(shù)的定義域和導數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數(shù),利用導數(shù)求得函數(shù)的單調性與最值,即可求解.【詳解】(1)由,定義域為,則,因為函數(shù)在處取得極值,所以,即,解得,經(jīng)檢驗,滿足題意,所以.(2)由(1)得,定義域為,當時,有,在區(qū)間上單調遞增,最小值為,當時,由得,且,當時,,單調遞減;當時,,單調遞增;所以在區(qū)間上單調遞增,最小值為,當時,則,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,綜上可得:當時,在區(qū)間上的最小值為1,當時,在區(qū)間上的最小值為.(3)由得,當時,,則,欲證,只需證,即證,即,設,則,當時,,在區(qū)間上單調遞增,當時,,即,故,即當時,恒有成立.本題主要考查導數(shù)在函數(shù)中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數(shù),利用導數(shù)研究函數(shù)的單調性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造新函數(shù),直接把問題轉化為函數(shù)的最值問題.18.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)設等比數(shù)列的公比為,根據(jù)題中條件求出的值,結合等比數(shù)列的通項公式可得出數(shù)列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項公式為;(Ⅱ),.本題考查等比數(shù)列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎題.19.(1)(2)1008【解析】

(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數(shù)列為各項均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008本題考查等差數(shù)列的通項公式、前項和公式,考查裂項相消法求數(shù)列的和.在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法.20.(Ⅰ)C的方程為,焦點F的坐標為(1,0);(Ⅱ)1【解析】

(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點F的坐標;

(Ⅱ)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設直線AB的方程為y=k(x+1)?1(k≠0),與拋物線聯(lián)立可得ky1-4y+4k-8=0,利用韋達定理以及弦長公式,轉化求解|MF|?|NF|的值.【詳解】(Ⅰ)由已知得,所以p=1.所以拋物線C的方程為,焦點F的坐標為(1,0);(II)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0.設直線AB的方程為y=k(x+1)?1(k≠0).由得,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論