版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025-2026學(xué)年天津市大港八中數(shù)學(xué)高三上期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù)滿(mǎn)足(是虛數(shù)單位),則的虛部為()A. B. C. D.2.函數(shù)的圖像大致為().A. B.C. D.3.中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱(chēng)“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂(lè)”不排在第一節(jié),“射”和“御”兩門(mén)課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2404.復(fù)數(shù)的共軛復(fù)數(shù)記作,已知復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),復(fù)數(shù):滿(mǎn)足.則等于()A. B. C. D.5.函數(shù)的圖象可能為()A. B.C. D.6.兩圓和相外切,且,則的最大值為()A. B.9 C. D.17.設(shè)一個(gè)正三棱柱,每條棱長(zhǎng)都相等,一只螞蟻從上底面的某頂點(diǎn)出發(fā),每次只沿著棱爬行并爬到另一個(gè)頂點(diǎn),算一次爬行,若它選擇三個(gè)方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.8.在正方體中,點(diǎn)、分別為、的中點(diǎn),過(guò)點(diǎn)作平面使平面,平面若直線(xiàn)平面,則的值為()A. B. C. D.9.已知向量,,當(dāng)時(shí),()A. B. C. D.10.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a11.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.12.已知圓關(guān)于雙曲線(xiàn)的一條漸近線(xiàn)對(duì)稱(chēng),則雙曲線(xiàn)的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),滿(mǎn)足,則目標(biāo)函數(shù)的最小值為_(kāi)_________.14.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過(guò)點(diǎn)C的豎直線(xiàn)的右側(cè),現(xiàn)要在這塊材料上裁出一個(gè)直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為_(kāi)_____.15.已知函數(shù)的最大值為3,的圖象與y軸的交點(diǎn)坐標(biāo)為,其相鄰兩條對(duì)稱(chēng)軸間的距離為2,則16.已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為2的正三角形,,則球的體積為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購(gòu)是非常方便的購(gòu)物方式,為了了解網(wǎng)購(gòu)在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購(gòu)的調(diào)查問(wèn)卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)經(jīng)常網(wǎng)購(gòu)偶爾或不用網(wǎng)購(gòu)合計(jì)男性50100女性70100合計(jì)(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān)?(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再?gòu)倪@10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率;②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購(gòu)的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)如圖,在四棱錐中底面是菱形,,是邊長(zhǎng)為的正三角形,,為線(xiàn)段的中點(diǎn).求證:平面平面;是否存在滿(mǎn)足的點(diǎn),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.19.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;(Ⅱ)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.20.(12分)已知橢圓的離心率為,直線(xiàn)過(guò)橢圓的右焦點(diǎn),過(guò)的直線(xiàn)交橢圓于兩點(diǎn)(均異于左、右頂點(diǎn)).(1)求橢圓的方程;(2)已知直線(xiàn),為橢圓的右頂點(diǎn).若直線(xiàn)交于點(diǎn),直線(xiàn)交于點(diǎn),試判斷是否為定值,若是,求出定值;若不是,說(shuō)明理由.21.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點(diǎn)為,當(dāng)變化時(shí),點(diǎn)構(gòu)成曲線(xiàn),證明:過(guò)原點(diǎn)的任意直線(xiàn)與曲線(xiàn)有且僅有一個(gè)公共點(diǎn).22.(10分)在中,角的對(duì)邊分別為,已知.(1)求角的大小;(2)若,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由得,然后分子分母同時(shí)乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因?yàn)?所以,所以復(fù)數(shù)的虛部為.故選A.本題考查了復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運(yùn)算的方法是分子分母同時(shí)乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運(yùn)算.2.A【解析】
本題采用排除法:由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無(wú)限接近于0時(shí),排除選項(xiàng)B;【詳解】對(duì)于選項(xiàng)D:由題意可得,令函數(shù),則,;即.故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對(duì)于選項(xiàng)B:當(dāng),且無(wú)限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號(hào)的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.3.A【解析】
利用間接法求解,首先對(duì)6門(mén)課程全排列,減去“樂(lè)”排在第一節(jié)的情況,再減去“射”和“御”兩門(mén)課程相鄰的情況,最后還需加上“樂(lè)”排在第一節(jié),且“射”和“御”兩門(mén)課程相鄰的情況;【詳解】解:根據(jù)題意,首先不做任何考慮直接全排列則有(種),當(dāng)“樂(lè)”排在第一節(jié)有(種),當(dāng)“射”和“御”兩門(mén)課程相鄰時(shí)有(種),當(dāng)“樂(lè)”排在第一節(jié),且“射”和“御”兩門(mén)課程相鄰時(shí)有(種),則滿(mǎn)足“樂(lè)”不排在第一節(jié),“射”和“御”兩門(mén)課程不相鄰的排法有(種),故選:.本題考查排列、組合的應(yīng)用,注意“樂(lè)”的排列對(duì)“射”和“御”兩門(mén)課程相鄰的影響,屬于中檔題.4.A【解析】
根據(jù)復(fù)數(shù)的幾何意義得出復(fù)數(shù),進(jìn)而得出,由得出可計(jì)算出,由此可計(jì)算出.【詳解】由于復(fù)數(shù)對(duì)應(yīng)復(fù)平面上的點(diǎn),,則,,,因此,.故選:A.本題考查復(fù)數(shù)模的計(jì)算,考查了復(fù)數(shù)的坐標(biāo)表示、共軛復(fù)數(shù)以及復(fù)數(shù)的除法,考查計(jì)算能力,屬于基礎(chǔ)題.5.C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗(yàn)證求解.【詳解】因?yàn)?,所以是奇函?shù),故排除A,B,又,故選:C本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.6.A【解析】
由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因?yàn)閮蓤A和相外切所以,即當(dāng)時(shí),取最大值故選:A本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.7.D【解析】
由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來(lái),其概率是,兩種事件又是互斥的,可得,根據(jù)求數(shù)列的通項(xiàng)知識(shí)可得選項(xiàng).【詳解】由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來(lái),其概率是,兩種事件又是互斥的,∴,即,∴,∴數(shù)列是以為公比的等比數(shù)列,而,所以,∴當(dāng)時(shí),,故選:D.本題考查幾何體中的概率問(wèn)題,關(guān)鍵在于運(yùn)用遞推的知識(shí),得出相鄰的項(xiàng)的關(guān)系,這是常用的方法,屬于難度題.8.B【解析】
作出圖形,設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),推導(dǎo)出,由線(xiàn)面平行的性質(zhì)定理可得出,可得出點(diǎn)為的中點(diǎn),同理可得出點(diǎn)為的中點(diǎn),結(jié)合中位線(xiàn)的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點(diǎn)、,連接、、,取的中點(diǎn),連接、,連接交于點(diǎn),四邊形為正方形,、分別為、的中點(diǎn),則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線(xiàn)平面,使得,若平面,則平面,又平面,則平面,此時(shí),平面為平面,直線(xiàn)不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點(diǎn),同理可證為的中點(diǎn),,,因此,.故選:B.本題考查線(xiàn)段長(zhǎng)度比值的計(jì)算,涉及線(xiàn)面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點(diǎn)位置,考查推理能力與計(jì)算能力,屬于中等題.9.A【解析】
根據(jù)向量的坐標(biāo)運(yùn)算,求出,,即可求解.【詳解】,.故選:A.本題考查向量的坐標(biāo)運(yùn)算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.10.A【解析】
令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導(dǎo)得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時(shí),g(x)<0,x>0時(shí),g(x)>0,g(x)max=g(1)=1e,可畫(huà)出函數(shù)g(x)的圖象(見(jiàn)下圖),要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.解決函數(shù)零點(diǎn)問(wèn)題,常常利用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想.11.A【解析】
由題意畫(huà)出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過(guò)E,F(xiàn)作平面ABC與平面DBC的垂線(xiàn),相交于O,則O為四面體的球心,由,得正方形OEGF的邊長(zhǎng)為,則,四面體的外接球的半徑,球O的表面積為.故選A.本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.12.C【解析】
將圓,化為標(biāo)準(zhǔn)方程為,求得圓心為.根據(jù)圓關(guān)于雙曲線(xiàn)的一條漸近線(xiàn)對(duì)稱(chēng),則圓心在漸近線(xiàn)上,.再根據(jù)求解.【詳解】已知圓,所以其標(biāo)準(zhǔn)方程為:,所以圓心為.因?yàn)殡p曲線(xiàn),所以其漸近線(xiàn)方程為,又因?yàn)閳A關(guān)于雙曲線(xiàn)的一條漸近線(xiàn)對(duì)稱(chēng),則圓心在漸近線(xiàn)上,所以.所以.故選:C本題主要考查圓的方程及對(duì)稱(chēng)性,還有雙曲線(xiàn)的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.-1【解析】
作出不等式對(duì)應(yīng)的平面區(qū)域,利用線(xiàn)性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.【詳解】作出實(shí)數(shù)x,y滿(mǎn)足對(duì)應(yīng)的平面區(qū)域如圖陰影所示;由z=x+2y﹣1,得yx,平移直線(xiàn)yx,由圖象可知當(dāng)直線(xiàn)yx經(jīng)過(guò)點(diǎn)A時(shí),直線(xiàn)yx的縱截距最小,此時(shí)z最?。桑肁(﹣1,﹣1),此時(shí)z的最小值為z=﹣1﹣2﹣1=﹣1,故答案為﹣1.本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線(xiàn)性規(guī)劃題目的常用方法,是基礎(chǔ)題14.【解析】
分兩種情況討論:(1)斜邊在BC上,設(shè),則,(2)若在若一條直角邊在上,設(shè),則,進(jìn)一步利用導(dǎo)數(shù)的應(yīng)用和三角函數(shù)關(guān)系式恒等變形和函數(shù)單調(diào)性即可求出最大值.【詳解】(1)斜邊在上,設(shè),則,則,,從而.當(dāng)時(shí),此時(shí),符合.(2)若一條直角邊在上,設(shè),則,則,,由知.,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,.當(dāng),即時(shí),最大.故答案為:.此題考查實(shí)際問(wèn)題中導(dǎo)數(shù),三角函數(shù)和函數(shù)單調(diào)性的綜合應(yīng)用,注意分類(lèi)討論把所有情況考慮完全,屬于一般性題目.15.【解析】,由題意,得,解得,則的周期為4,且,所以.考點(diǎn):三角函數(shù)的圖像與性質(zhì).16.【解析】
由題意可得三棱錐的三條側(cè)棱兩兩垂直,則它的外接球就是棱長(zhǎng)為的正方體的外接球,求出正方體的對(duì)角線(xiàn)的長(zhǎng),就是球的直徑,然后求出球的體積.【詳解】解:因?yàn)?,為正三角形,所以,因?yàn)?,所以三棱錐的三條側(cè)棱兩兩垂直,所以它的外接球就是棱長(zhǎng)為的正方體的外接球,因?yàn)檎襟w的對(duì)角線(xiàn)長(zhǎng)為,所以其外接球的半徑為,所以球的體積為故答案為:此題考查球的體積,幾何體的外接球,考查空間想象能力,計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)詳見(jiàn)解析;(Ⅱ)①;②數(shù)學(xué)期望為6,方差為2.4.【解析】
(1)完成列聯(lián)表,由列聯(lián)表,得,由此能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān).(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購(gòu)的有人,偶爾或不用網(wǎng)購(gòu)的有人,由此能選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率.②由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購(gòu)的市民的頻率為:,由題意,由此能求出隨機(jī)變量的數(shù)學(xué)期望和方差.【詳解】解:(1)完成列聯(lián)表(單位:人):經(jīng)常網(wǎng)購(gòu)偶爾或不用網(wǎng)購(gòu)合計(jì)男性5050100女性7030100合計(jì)12080200由列聯(lián)表,得:,∴能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān).(2)①由題意所抽取的10名女市民中,經(jīng)常網(wǎng)購(gòu)的有人,偶爾或不用網(wǎng)購(gòu)的有人,∴選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率為:.②由列聯(lián)表可知,抽到經(jīng)常網(wǎng)購(gòu)的市民的頻率為:,將頻率視為概率,∴從我市市民中任意抽取一人,恰好抽到經(jīng)常網(wǎng)購(gòu)市民的概率為0.6,由題意,∴隨機(jī)變量的數(shù)學(xué)期望,方差D(X)=.本題考查獨(dú)立檢驗(yàn)的應(yīng)用,考查概率、離散型隨機(jī)變量的分布列、數(shù)學(xué)期望、方差的求法,考查古典概型、二項(xiàng)分布等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.18.證明見(jiàn)解析;2.【解析】
利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因?yàn)槭钦切?,為線(xiàn)段的中點(diǎn),所以.因?yàn)槭橇庑?,所以.因?yàn)?,所以是正三角形,所以,而,所以平面.又,所以平面.因?yàn)槠矫?,所以平面平面.由,知.所以,,.因此,的充要條件是,所以,.即存在滿(mǎn)足的點(diǎn),使得,此時(shí).本題主要考查平面與平面垂直的判定、三棱錐的體積等基礎(chǔ)知識(shí);考查空間想象能力、運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí);考查化歸與轉(zhuǎn)化、函數(shù)與方程等數(shù)學(xué)思想,屬于難題.19.(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)首先求得導(dǎo)函數(shù),然后結(jié)合導(dǎo)函數(shù)的解析式分類(lèi)討論函數(shù)的單調(diào)性即可;(Ⅱ)將原問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化為,,恒成立,然后構(gòu)造新函數(shù),結(jié)合函數(shù)的性質(zhì)確定實(shí)數(shù)的取值范圍即可.【詳解】解:(Ⅰ)當(dāng)時(shí),,當(dāng)時(shí),在上恒成立,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),由得:;由得:.∴當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,無(wú)單調(diào)遞增區(qū)間:當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,函數(shù)的單調(diào)遞增區(qū)間是.(Ⅱ)對(duì)任意的和,恒成立等價(jià)于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,∴當(dāng)時(shí),,即又∵,∴實(shí)數(shù)的取值范圍是:.本題主要考查導(dǎo)函數(shù)研究函數(shù)的單調(diào)性和恒成立問(wèn)題,考查分類(lèi)討論的數(shù)學(xué)思想,等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想等知識(shí),屬于中等題.20.(1)(2)定值為0.【解析】
(1)根據(jù)直線(xiàn)方程求焦點(diǎn)坐標(biāo),即得c,再根據(jù)離心率得,(2)先設(shè)直線(xiàn)方程以及各點(diǎn)坐標(biāo),化簡(jiǎn),再聯(lián)立直線(xiàn)方程與橢圓方程,利用韋達(dá)定理代入化簡(jiǎn)得結(jié)果.【詳解】(1)因?yàn)橹本€(xiàn)過(guò)橢圓的右焦點(diǎn),所以,因?yàn)殡x心率為,所以,(2),設(shè)直線(xiàn),則因此由得,所以,因此即本題考查橢圓方程以及直線(xiàn)與橢圓位置關(guān)系,考查綜合分析求解能力,屬中檔題.21.(1);(2)證明見(jiàn)解析【解析】
(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線(xiàn)的方程為,進(jìn)而只需證明對(duì)任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 木門(mén)裝飾合同范本
- 定購(gòu)瓷磚合同范本
- 服務(wù)維護(hù)合同范本
- 室居裝材合同范本
- 2026年定西師范高等專(zhuān)科學(xué)校輔導(dǎo)員招聘?jìng)淇碱}庫(kù)附答案
- 2025清華大學(xué)機(jī)械工程系微納制造與摩擦學(xué)團(tuán)隊(duì)路新春教授招收博士后備考題庫(kù)必考題
- 2025浙江大學(xué)人才派遣員工招聘考試題庫(kù)附答案
- 中山市東鳳鎮(zhèn)吉昌幼兒園招聘?jìng)淇碱}庫(kù)必考題
- 2026年演出經(jīng)紀(jì)人之演出市場(chǎng)政策與法律法規(guī)考試題庫(kù)200道含完整答案【全優(yōu)】
- 2026山東日照銀行校園150人招聘考試題庫(kù)新版
- 車(chē)間后備人才現(xiàn)狀匯報(bào)
- 2025四川產(chǎn)業(yè)振興基金投資集團(tuán)有限公司應(yīng)屆畢業(yè)生招聘9人筆試歷年難易錯(cuò)考點(diǎn)試卷帶答案解析2套試卷
- 《建筑設(shè)計(jì)》課程教案(2025-2026學(xué)年)
- 軟裝工程質(zhì)量管理方案有哪些
- 海水墻面防水施工方案設(shè)計(jì)
- 路面攤鋪安全培訓(xùn)內(nèi)容課件
- 水箱安裝施工質(zhì)量管理方案
- 2025年國(guó)企人力資源管理崗招聘考試專(zhuān)業(yè)卷(含崗位說(shuō)明書(shū))解析與答案
- 光伏電廠(chǎng)防火安全培訓(xùn)課件
- 小學(xué)數(shù)學(xué)單位換算表(高清可打?。?/a>
- 千縣工程縣醫(yī)院微創(chuàng)介入中心綜合能力建設(shè)評(píng)價(jià)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論