2025-2026學年四川蓉城名校聯(lián)盟數(shù)學高三第一學期期末質量跟蹤監(jiān)視試題_第1頁
2025-2026學年四川蓉城名校聯(lián)盟數(shù)學高三第一學期期末質量跟蹤監(jiān)視試題_第2頁
2025-2026學年四川蓉城名校聯(lián)盟數(shù)學高三第一學期期末質量跟蹤監(jiān)視試題_第3頁
2025-2026學年四川蓉城名校聯(lián)盟數(shù)學高三第一學期期末質量跟蹤監(jiān)視試題_第4頁
2025-2026學年四川蓉城名校聯(lián)盟數(shù)學高三第一學期期末質量跟蹤監(jiān)視試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025-2026學年四川蓉城名校聯(lián)盟數(shù)學高三第一學期期末質量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(shù)若關于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.2.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()3.已知,則()A. B. C. D.24.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.1805.已知函數(shù)在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、6.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.7.正項等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.548.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.79.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?10.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直11.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.1512.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知均為非負實數(shù),且,則的取值范圍為______.14.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.15.已知函數(shù)在點處的切線經(jīng)過原點,函數(shù)的最小值為,則________.16.設O為坐標原點,,若點B(x,y)滿足,則的最大值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.18.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.19.(12分)貧困人口全面脫貧是全面建成小康社會的標志性指標.黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機制”對當前和下一個階段的扶貧工作進行了前瞻性的部署,即2020年要通過精準扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標.為了響應黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農(nóng)產(chǎn)品加工生產(chǎn)銷售進行指導,經(jīng)調查知,在一個銷售季度內(nèi),每售出一噸該產(chǎn)品獲利5萬元,未售出的商品,每噸虧損2萬元.經(jīng)統(tǒng)計,兩市場以往100個銷售周期該產(chǎn)品的市場需求量的頻數(shù)分布如下表:市場:需求量(噸)90100110頻數(shù)205030市場:需求量(噸)90100110頻數(shù)106030把市場需求量的頻率視為需求量的概率,設該廠在下個銷售周期內(nèi)生產(chǎn)噸該產(chǎn)品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據(jù),確定下個銷售周期內(nèi)生產(chǎn)量噸還是噸?并說明理由.20.(12分)某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季進了160盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學季利潤不少于4800元的概率.21.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調區(qū)間;(Ⅱ)當時,求函數(shù)在上最小值.22.(10分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.本題考查了函數(shù)零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.2.D【解析】

由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.3.B【解析】

結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B本小題主要考查利用同角三角函數(shù)的基本關系式化簡求值,考查二倍角公式,屬于中檔題.4.A【解析】

因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.5.A【解析】

設,利用導數(shù)和題設條件,得到,得出函數(shù)在R上單調遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數(shù)在R上單調遞增,則,即,變形可得.故選:A.本題主要考查了利用導數(shù)研究函數(shù)的單調性及其應用,以及利用單調性比較大小,其中解答中根據(jù)題意合理構造新函數(shù),利用新函數(shù)的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.6.D【解析】

可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關系,平行線分線段成比例的定理,考查了計算能力,屬于基礎題.7.C【解析】

由等差數(shù)列通項公式得,求出,再利用等差數(shù)列前項和公式能求出.【詳解】正項等差數(shù)列的前項和,,,解得或(舍),,故選C.本題主要考查等差數(shù)列的性質與求和公式,屬于中檔題.解等差數(shù)列問題要注意應用等差數(shù)列的性質()與前項和的關系.8.B【解析】

先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.本題考查二項展開式問題,屬于基礎題9.B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點:交集及其運算.10.D【解析】

根據(jù)異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.11.B【解析】,∴,選B.12.D【解析】

設,,去絕對值,根據(jù)余弦函數(shù)的性質即可求出.【詳解】因為實數(shù),滿足,設,,,恒成立,,故則的最小值等于.故選:.本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質,考查了運算能力和轉化能力,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數(shù)的最值即可求解.【詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數(shù)的對稱軸為,所以當時函數(shù)有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數(shù)的對稱軸為,所以當時,函數(shù)有最小值為,即,當,且時取等號,所以.故答案為:本題考查基本不等式與二次函數(shù)求最值相結合求代數(shù)式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.14.【解析】

由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.15.0【解析】

求出,求出切線點斜式方程,原點坐標代入,求出的值,求,求出單調區(qū)間,進而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當時,;當時,.故函數(shù)的最小值,所以.故答案為:0.本題考查導數(shù)的應用,涉及到導數(shù)的幾何意義、極值最值,屬于中檔題..16.【解析】,可行域如圖,直線與圓相切時取最大值,由三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)利用余弦定理可得的長;(2)利用面積得出,結合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.18.(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,即可:(2)取中點,連,以為原點,分別為軸建立空間直角坐標系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點,連,以為原點,分別為軸建立如圖所示空間直角坐標系:,點,設平面的法向量為,,有,令,得又,設直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學生的運算求解能力,本題解題關鍵是正確寫出點的坐標.19.(1);(2)噸,理由見解析【解析】

(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,則,,,,,,;(2)可取180,190,200,210,220,當時,當時,.,時,平均利潤大,所以下個銷售周期內(nèi)生產(chǎn)量噸.本題考查離散型隨機變量的期望,是中檔題.20.(1),眾數(shù)為150;(2);(3)【解析】

(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個開學季內(nèi)市場需求量的眾數(shù)和平均數(shù);(2)由已知條件推導出當時,,當時,,由此能將表示為的函數(shù);(3)利用頻率分布直方圖能求出利潤不少于4800元的概率.【詳解】(1)由直方圖可估計需求量的眾數(shù)為150,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:∴估計需求量的平均數(shù)為:(2)當時,當時,∴(3)由(2)知當時,當時,得∴開學季利潤不少于4800元的需求量為由頻率分布直方圖可所求概率本題考查頻率分布直方圖的應用,考查函數(shù)解析式的求法,考查概率的估計,是中檔題,解題時要注意頻率分布直方圖的合理運用.21.(Ⅰ)見解析;(Ⅱ)當時,函數(shù)的最小值是;當時,函數(shù)的最小值是【解析】

(1)求出導函數(shù),并且解出它的零點x=,再分區(qū)間討論導數(shù)的正負,即可得到函數(shù)f(x)的單調區(qū)間;

(2)分三種情況加以討論,結合函數(shù)的單調性與函數(shù)值的大小比較,即可得到當0<a<ln2時,函數(shù)f(x)的最小值是-a;當a≥ln2時,函數(shù)f(x)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論