版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》章節(jié)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知菱形ABCD的對(duì)角線AC,BD的長(zhǎng)分別為6,8,AE⊥BC,垂足為點(diǎn)E,則AE的長(zhǎng)是()A.5 B.2 C. D.2、在□ABCD中,AC=24,BD=38,AB=m,則m的取值范圍是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<123、如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),于點(diǎn)C.已知,.點(diǎn)B到原點(diǎn)的最大距離為()A.22 B.18 C.14 D.104、如圖,矩形ABCD中,AB=3,AD=4,將矩形ABCD折疊后,A點(diǎn)的對(duì)應(yīng)點(diǎn)落在CD邊上,EF為折痕,A和EF交于G點(diǎn),當(dāng)AG+BG取最小值時(shí),此時(shí)EF的值為()A. B.3 C.2 D.55、的周長(zhǎng)為32cm,AB:BC=3:5,則AB、BC的長(zhǎng)分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在矩形ABCD中,AB=3,BC=4,點(diǎn)P是對(duì)角線AC上一點(diǎn),若點(diǎn)P、A、B組成一個(gè)等腰三角形時(shí),△PAB的面積為_(kāi)__________.2、如圖,平面直角坐標(biāo)系中,有,,三點(diǎn),以A,B,O三點(diǎn)為頂點(diǎn)的平行四邊形的另一個(gè)頂點(diǎn)D的坐標(biāo)為_(kāi)_____.3、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.4、如圖,在矩形ABCD中,對(duì)角線AC,BD相交于O,EF過(guò)點(diǎn)O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_(kāi)____cm2.5、一個(gè)矩形的兩條對(duì)角線所夾的銳角是60°,這個(gè)角所對(duì)的邊長(zhǎng)為10cm,則該矩形的面積為_(kāi)______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖所示,在邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點(diǎn)的一動(dòng)點(diǎn),N是CD上一動(dòng)點(diǎn),且AM+CN=1.(1)證明:無(wú)論M,N怎樣移動(dòng),△BMN總是等邊三角形;(2)求△BMN面積的最小值.2、如圖,平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3,AD=5,求BD的長(zhǎng).3、如圖,正方形ABCD中,點(diǎn)E在BC的延長(zhǎng)線上,AE分別交DC,BD于F,G,點(diǎn)H為EF的中點(diǎn).求證:(1)∠DAG=∠DCG;(2)GC⊥CH.4、如圖,將長(zhǎng)方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.(1)試判斷△BDE的形狀,并說(shuō)明理由;(2)若AB=6,BC=18,求△BDE的面積.5、綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.-參考答案-一、單選題1、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長(zhǎng),在Rt△BOC中求出BC,利用菱形面積等于對(duì)角線乘積的一半,也等于BC×AE,可得出AE的長(zhǎng)度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點(diǎn)睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對(duì)角線互相垂直且平分.2、C【解析】【分析】作出平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,,然后在中,利用三角形三邊的關(guān)系即可確定m的取值范圍.【詳解】解:如圖所示:∵四邊形ABCD為平行四邊形,∴,,在中,,∴,即,故選:C.【點(diǎn)睛】題目主要考查平行四邊形的性質(zhì)及三角形三邊的關(guān)系,熟練掌握平行四邊形的性質(zhì)及三角形三邊關(guān)系是解題關(guān)鍵.3、B【解析】【分析】首先取AC的中點(diǎn)E,連接BE,OE,OB,可求得OE與BE的長(zhǎng),然后由三角形三邊關(guān)系,求得點(diǎn)B到原點(diǎn)的最大距離.【詳解】解:取AC的中點(diǎn)E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點(diǎn)O,E,B不在一條直線上,則OB<OE+BE=18.若點(diǎn)O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點(diǎn)在一條直線上時(shí),OB取得最大值,最大值為18.故選:B【點(diǎn)睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.4、A【解析】【分析】過(guò)點(diǎn)作于,由翻折的性質(zhì)知點(diǎn)為的中點(diǎn),則為的中位線,可知在上運(yùn)動(dòng),當(dāng)取最小值時(shí),此時(shí)與重合,利用勾股定理和相似求出的長(zhǎng)即可解決問(wèn)題.【詳解】解:過(guò)點(diǎn)作于,將矩形折疊后,點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上,點(diǎn)為的中點(diǎn),為的中位線,在上運(yùn)動(dòng),在上運(yùn)動(dòng),當(dāng)取最小值時(shí),此時(shí)與重合,,,,,,,,,在和中,,,,,故選:A.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),翻折的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是證明在上運(yùn)動(dòng).5、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長(zhǎng)為32cm,∴,即,解得:,∴.故選:C【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對(duì)邊相等是解題的關(guān)鍵.二、填空題1、或或3【解析】【分析】過(guò)B作BM⊥AC于M,根據(jù)矩形的性質(zhì)得出∠ABC=90°,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫(huà)出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當(dāng)AB=BP=3時(shí),如圖1,過(guò)B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當(dāng)AB=AP=3時(shí),如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)、等腰三角形的判定以及勾股定理求邊長(zhǎng),熟練掌握矩形的性質(zhì),利用等腰三角形的判定,分成三種情況討論,是解決本題的關(guān)鍵.2、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標(biāo)相等,根據(jù)B的橫坐標(biāo)和BO的值即可求出D的橫坐標(biāo).【詳解】∵平行四邊形ABCD的頂點(diǎn)A、B、O的坐標(biāo)分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標(biāo)是3+6=9,縱坐標(biāo)是4,即D的坐標(biāo)是(9,4),同理可得出D的坐標(biāo)還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對(duì)邊平行且相等.3、菱形【解析】【分析】先在坐標(biāo)系中畫(huà)出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.4、10【解析】【分析】利用矩形性質(zhì),求證,將陰影部分的面積轉(zhuǎn)為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉(zhuǎn)化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)以全等三角形的判定與性質(zhì)以及中線平分三角形面積,熟練利用矩形性質(zhì),證明三角形全等,將陰影部分面積轉(zhuǎn)化為其他圖形的面積,這是解決本題的關(guān)鍵.5、【解析】【分析】先根據(jù)矩形的性質(zhì)證明△ABC是等邊三角形,得到,則,然后根據(jù)勾股定理求出,最后根據(jù)矩形面積公式求解即可.【詳解】:如圖所示,在矩形ABCD中,∠AOB=60°,,∵四邊形ABCD是矩形,∴∠ABC=90°,,∴△ABC是等邊三角形,∴,∴,∴,∴,故答案為:.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,等邊三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握矩形的性質(zhì).三、解答題1、(1)見(jiàn)解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質(zhì)易得∠MBN=60゜,從而可證得結(jié)論成立;(2)過(guò)點(diǎn)B作BE⊥MN于點(diǎn)E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過(guò)點(diǎn)B作BE⊥MN于點(diǎn)E.設(shè)BM=BN=MN=x,則,故,∴當(dāng)BM⊥AD時(shí),x最小,此時(shí),,.∴△BMN面積的最小值為.【點(diǎn)睛】本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),垂線段最短,全等三角形的判定與性質(zhì)等知識(shí),關(guān)鍵是作輔助線證三角形全等.2、【分析】根據(jù)平行四邊形的性質(zhì)可得,,勾股定理求得,,進(jìn)而求得【詳解】解:四邊形是平行四邊形AB⊥AC,在中,在中,【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),勾股定理,熟練掌握平行四邊形的性質(zhì)是解題的關(guān)鍵.3、(1)見(jiàn)解析;(2)見(jiàn)解析【分析】(1)要證明,需把兩角放到兩三角形中,證明兩三角形與全等得到,全等的方法是:由為正方形,得到與相等,與相等,再加上公共邊,利用“”得到全等,利用全等三角形的對(duì)應(yīng)角相等得證;(2)要證明與垂直,需證,即,方法是:由正方形的對(duì)邊與平行,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等得到與相等,由(1)得到的與相等,等量代換得到與相等,再由為直角三角形斜邊上的中線,得到與相等都等于斜邊的一半,根據(jù)“等邊對(duì)等角”得到與相等,又等于,等量代換得到,即,得證.【詳解】證明:(1)為正方形,,,,又,,;(2)為正方形,,,又,,為直角三角形斜邊邊的中點(diǎn),,,,又,,即,.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及直角三角形的性質(zhì),以及直角三角形斜邊上的中線等于斜邊的一半,是一道證明題.解題的關(guān)鍵是要求學(xué)生熟練掌握正方形的性質(zhì):四條邊都相等,四個(gè)角相等都為直角,對(duì)角線互相垂直且平分,一條對(duì)角線平分一組對(duì)角.4、(1)見(jiàn)解析;(2)30【分析】(1)根據(jù)折疊的性質(zhì)以及矩形的性質(zhì)可得結(jié)果;(2)設(shè)DE=x,則BE=x,AE=18﹣x,在Rt△ABE中,由勾股定理列方程求解.【詳解】解:(1)△BDE是等腰三角形.由折疊可知,∠CBD=∠EBD,∵AD∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE,即△BDE是等腰三角形;(2)設(shè)DE=x,則BE=x,AE=18﹣x,在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即62+(18﹣x)2=x2,解得:x=10,所以S△BDE=DE×AB=×10×6=30.【點(diǎn)睛】本題考查了等腰三角形的判定,矩形與折疊的性質(zhì),勾股定理等知識(shí)點(diǎn),熟練掌握相關(guān)的性質(zhì)以及定理是解本題的關(guān)鍵.5、(1)MN=AM+CN;(2)MN=AM+CN,理由見(jiàn)解析;(3)MN=CN-AM,理由見(jiàn)解析【分析】(1)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,可得到點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=45°,可得∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(2)把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,由∠A+∠C=180°,可得點(diǎn)M'、C、N三點(diǎn)共線,再由∠MBN=∠ABC,可得到∠M'BN=∠MBN,從而證得△NBM≌△NBM',即可求解;(3)在NC上截取CM'=AM,連接BM',由∠ABC+∠ADC=180°,可得∠BAM=∠C,再由AB=BC,可證得△ABM≌△CBM',從而得到AM=CM',BM=BM',∠ABM=∠CBM',進(jìn)而得到∠MAM'=∠ABC,再由∠MBN=∠ABC,可得∠MBN=∠M'BN,從而得到△NBM≌△NBM',即可求解.【詳解】解:(1)如圖,把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC,在正方形ABCD中,∠A=∠BCD=∠ABC=90°,AB=BC,∴∠BCM'+∠BCD=180°,∴點(diǎn)M'、C、N三點(diǎn)共線,∵∠MBN=45°,∴∠ABM+∠CBN=45°,∴∠M'
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防安全員理論考試卷含答案
- 環(huán)磷酰胺沖擊治療術(shù)后難治性MG方案優(yōu)化
- 深度解析(2026)《GBT 19310-2025小艇 永久性安裝的燃油系統(tǒng)》
- 客服主管面試題及服務(wù)技能考核含答案
- 通信行業(yè)網(wǎng)絡(luò)工程師面試題
- 年產(chǎn)xxx二極管 項(xiàng)目可行性分析報(bào)告
- 布輪建設(shè)項(xiàng)目可行性分析報(bào)告(總投資5000萬(wàn)元)
- 美容師崗位面試題及答案
- 大數(shù)據(jù)公司數(shù)據(jù)分析師日常工作及問(wèn)題解決技巧
- 深度解析(2026)《GBT 18874.1-2002起重機(jī) 供需雙方應(yīng)提供的資料 第1部分總則》
- 2024年合作約定:專業(yè)MG動(dòng)畫(huà)制作合同
- 病歷書(shū)寫(xiě)基本規(guī)范課件
- 簽電子合同范本
- 醫(yī)用氧氣瓶使用及注意事項(xiàng)課件
- 《誤差理論與數(shù)據(jù)處理(第7版)》費(fèi)業(yè)泰-習(xí)題答案
- NB-T 47013.1-2015 承壓設(shè)備無(wú)損檢測(cè) 第1部分-通用要求
- 園區(qū)草皮種植合同范本
- 陜西2023年西安銀行招聘高層次人才考試參考題庫(kù)含答案詳解
- 標(biāo)準(zhǔn)魚(yú)線線徑對(duì)照表
- HGT-20519-2009-化工工藝設(shè)計(jì)施工圖內(nèi)容和深度統(tǒng)一規(guī)定
- 采購(gòu)訂單excel模版
評(píng)論
0/150
提交評(píng)論