版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶市實驗中學(xué)7年級數(shù)學(xué)下冊第四章三角形定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,E為線段BC上一點,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,則BE的長度為()A.12 B.10 C.8 D.62、如圖,,,,,垂足分別為、,且,,則的長是()A.2 B.3 C.5 D.73、下列四個圖形中,BE不是△ABC的高線的圖是()A. B.C. D.4、如圖,在正方形ABCD中,E,F(xiàn)分別為AD,CD上的點,且AE=CF,則下列說法正確的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠25、已知的三邊長分別為a,b,c,則a,b,c的值可能分別是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,106、如圖,點O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,則OC的長為()A.3 B.4 C.5 D.67、如圖,AB=AC,點D、E分別在AB、AC上,補充一個條件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC8、有兩根長度分別為7cm,11cm的木棒,下面為第三根的長度,則可圍成一個三角形框架的是()A.3cm B.4cm C.9cm D.19cm9、有一個三角形的兩邊長分別為2和5,則第三邊的長可能是()A.2 B.2.5 C.3 D.510、如圖,AC=DC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列選項中的()A.∠A=∠D B.BC=ECC.AB=DE D.∠B=∠E第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,已知AB=3,AC=CD=1,∠D=∠BAC=90°,則△ACE的面積是_____.2、如圖,為△ABC的中線,為△的中線,為△的中線,……按此規(guī)律,為△的中線.若△ABC的面積為8,則△的面積為_______________.3、如圖,AC=DB,AO=DO,CD=100,則A,B兩點間的距離為_______.4、如圖,點,在直線上,且,且,過,,分別作,,,若,,,則的面積是______.5、在△ABC中,若AC=3,BC=7則第三邊AB的取值范圍為________.6、如圖,AD是BC邊上的中線,AB=5cm,AD=4cm,△ABD的周長是12cm,則BC的長是____cm.7、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)8、如圖,方格紙中是9個完全相同的正方形,則∠1+∠2的值為_____.9、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結(jié)論有_____.(填序號)10、如圖,要測量水池的寬度,可從點出發(fā)在地面上畫一條線段,使,再從點觀測,在的延長線上測得一點,使,這時量得,則水池寬的長度是______m.三、解答題(6小題,每小題10分,共計60分)1、如圖,點E、B在線段AB上,AE=DB,BC=EF,BC∥EF,求證:AC=DF.2、如圖,已知AB=AC,BD=CE,證明△ABE≌△ACD.3、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長4、如圖,點B、F、C、E在同一條直線上,AB=DE,AC=DF,BF=EC.求證:∠A=∠D.5、在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當直線MN繞點C旋轉(zhuǎn)到圖①的位置時,易證△ADC≌△CEB(不需要證明),進而得到DE、AD、BE之間的數(shù)量關(guān)系為.(探究)(2)當直線MN繞點C旋轉(zhuǎn)到圖②的位置時,求證:DE=AD-BE.(3)當直線MN繞點C旋轉(zhuǎn)到圖③的位置時,直接寫出DE、AD、BE之間的數(shù)量關(guān)系.6、已知:如圖,線段BE、DC交于點O,點D在線段AB上,點E在線段AC上,AB=AC,AD=AE.求證:∠B=∠C.-參考答案-一、單選題1、A【分析】利用角相等和邊相等證明,利用全等三角形的性質(zhì)以及邊的關(guān)系,即可求出BE的長度.【詳解】解:由題意可知:∠ABE=∠AED=∠ECD=90°,,,,在和中,,,,故選:A.【點睛】本題主要是考查了全等三角形的判定和性質(zhì),熟練通過已知條件證明三角形全等,利用全等性質(zhì)及邊的關(guān)系,來求解未知邊的長度,這是解決本題的主要思路.2、B【分析】根據(jù),,可得∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,再由∠BCD=∠CAE,從而證得△ACE≌△CBD,進而得到CE=BD,AE=CD,即可求解.【詳解】解:∵,,∴∠AEC=∠BDC=90°,∠CAE+∠ACE=90°,∵,∴∠BCD+∠ACE=90°,∴∠BCD=∠CAE,∵,∴△ACE≌△CBD,∴CE=BD,AE=CD,∵,,∴DE=CD-CE=AE-BD=5-2=3.故選:B【點睛】本題主要考查了全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定方法是解題的關(guān)鍵.3、C【分析】利用三角形的高的定義可得答案.【詳解】解:BE不是△ABC的高線的圖是C,故選:C.【點睛】此題主要考查了三角形的高,關(guān)鍵是掌握從三角形的一個頂點向底邊作垂線,垂足與頂點之間的線段叫做三角形的高.4、C【分析】由“SAS”可證△ABE≌△CBF,可得∠AEB=∠2,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故選:C.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),證明三角形全等是解題的關(guān)鍵.5、C【分析】三角形的三邊應(yīng)滿足兩邊之和大于第三邊,兩邊之差小于第三邊,據(jù)此求解.【詳解】解:A、1+2=3,不能組成三角形,不符合題意;B、3+4=7,不能組成三角形,不符合題意;C、2+3>4,能組成三角形,符合題意;D、4+5<10,不能組成三角形,不符合題意;故選:C.【點睛】本題考查了三角形的三邊關(guān)系,滿足兩條較小邊的和大于最大邊即可.6、C【分析】證明△AOB≌△COD推出OB=OD,OA=OC,即可解決問題.【詳解】解:∵∠AOC=∠BOD,∴∠AOC+∠COB=∠BOD+∠COB,即∠AOB=∠COD,∵∠A=∠C,CD=AB,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∵AD=8,OB=3,∴OC=AO=AD-OD=AD-OB=5.故選C.【點睛】本題考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.7、C【分析】根據(jù)全等三角形的判定定理進行判斷即可.【詳解】解:根據(jù)題意可知:AB=AC,,若,則根據(jù)可以證明△ABE≌△ACD,故A不符合題意;若AD=AE,則根據(jù)可以證明△ABE≌△ACD,故B不符合題意;若BE=CD,則根據(jù)不可以證明△ABE≌△ACD,故C符合題意;若∠AEB=∠ADC,則根據(jù)可以證明△ABE≌△ACD,故D不符合題意;故選:C.【點睛】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解本題的關(guān)鍵.8、C【分析】已知兩邊,則第三邊的長度應(yīng)是大于兩邊的差且小于兩邊的和,這樣就可求出第三邊長的范圍.【詳解】解:依題意得:11﹣7<x<7+11,即4<x<18,9cm適合.故選:C.【點睛】本題考查三角形三邊關(guān)系,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.9、D【分析】根據(jù)三角形三邊關(guān)系,兩邊之和第三邊,兩邊之差小于第三邊即可判斷.【詳解】解:設(shè)第三邊為x,則5?2<x<5+2,即3<x<7,所以選項D符合題意.故選:D.【點睛】本題考查三角形三邊關(guān)系定理,記住兩邊之和第三邊,兩邊之差小于第三邊,屬于基礎(chǔ)題,中考??碱}型.10、C【分析】根據(jù)全等三角形的判定定理進行分析即可;【詳解】根據(jù)已知條件可得,即,∵AC=DC,∴已知三角形一角和角的一邊,根據(jù)全等條件可得:A.∠A=∠D,可根據(jù)ASA證明,A正確;B.BC=EC,可根據(jù)SAS證明,B正確;C.AB=DE,不能證明,C故錯誤;D.∠B=∠E,根據(jù)AAS證明,D正確;故選:C.【點睛】本題主要考查了全等三角形的判定定理,掌握全等三角形的判定方法是解題的關(guān)鍵.二、填空題1、##【分析】先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質(zhì)可得,然后利用三角形的面積公式即可得.【詳解】解:在和中,,,,則的面積是,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質(zhì),熟練掌握三角形全等的判定方法是解題關(guān)鍵.2、【分析】根據(jù)三角形的中線性質(zhì),可得△的面積=,△的面積=,……,進而即可得到答案.【詳解】由題意得:△的面積=,△的面積=,……,△的面積==.故答案是:.【點睛】本題主要考查三角形的中線的性質(zhì),掌握三角形的中線把三角形的面積平分,是解題的關(guān)鍵.3、100【分析】由,,可得,從而可得,得出,根據(jù),則,兩點間的距離即可求解.【詳解】解:∵,,∴,又∵,∴在與中,,∴,∴,∵,∴,兩點間的距離為100.故答案為:100.【點睛】本題考查了全等三角形的判定及性質(zhì),解決本題的關(guān)鍵是判定與全等.4、15【分析】根據(jù)AAS證明△EFA≌△AGB,△BGC≌△CHD,再根據(jù)全等三角形的性質(zhì)以及三角形的面積公式求解即可.【詳解】解:(1)∵EF⊥FG,BG⊥FG,∴∠EFA=∠AGB=90°,∴∠AEF+∠EAF=90°,又∵AE⊥AB,即∠EAB=90°,∴∠BAG+∠EAF=90°,∴∠AEF=∠BAG,在△AEC和△CDB中,,∴△EFA≌△AGB(AAS);同理可證△BGC≌△CHD(AAS),∴AG=EF=6,CG=DH=4,∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.故答案為:15.【點睛】本題考查了三角形全等的性質(zhì)和判定,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題.5、4<AB<10【分析】根據(jù)三角形的三邊關(guān)系,直接求解即可.【詳解】解:∵在△ABC中,AC=3,BC=7,,即,解得.故答案為:.【點睛】本題考查的是三角形的三邊關(guān)系,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.三角形中第三邊的長大于其他兩邊之差,小于其他兩邊之和.6、6【分析】根據(jù)AD是BC邊上的中線,得出為的中點,可得,根據(jù)條件可求出.【詳解】解:AD是BC邊上的中線,為的中點,,,△ABD的周長是12cm,,,故答案是:6.【點睛】本題考查了三角形的中線,解題的關(guān)鍵利用中線的性質(zhì)得出為的中點.7、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應(yīng)角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運用是解題關(guān)鍵.8、【分析】如圖(見解析),先根據(jù)三角形全等的判定定理證出,再根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,在和中,,,,,故答案為:.【點睛】本題考查了三角形全等的判定定理與性質(zhì)等知識點,正確找出兩個全等三角形是解題關(guān)鍵.9、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質(zhì),BC∥DE,再根據(jù)平行線的性質(zhì)得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結(jié)論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線的判定與性質(zhì)等知識點的運用.要求學(xué)生具備運用這些定理進行推理的能力.10、160【分析】利用全等三角形的性質(zhì)解決問題即可.【詳解】解:,,在與中,,≌,,故答案為:.【點睛】本題考查全等三角形的應(yīng)用,解題關(guān)鍵是理解題意,正確尋找全等三角形解決問題.三、解答題1、證明見解析.【分析】根據(jù)平行線的性質(zhì)和全等三角形的判定和性質(zhì)解答即可.【詳解】證明:∵BC∥EF,∴∠CBA=∠FED,∵AE=DB,∴AE+BE=BD+BE,即AB=DE,在△ABC與△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.【點睛】本題考查了全等三角形的判定和性質(zhì):熟練掌握全等三角形的5種判定方法.選用哪一種方法,取決于題目中的已知條件,若已知兩邊對應(yīng)相等,則找它們的夾角或第三邊.2、見解析【分析】已知兩邊,則我們可以利用SSS或SAS來證明,此處應(yīng)采用SAS來證明.【詳解】解:∵AB=AC,BD=CE,∴AD=AE.又∵∠A=∠A,∴△ABE≌△ACD(SAS).【點睛】本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,本題比較簡單.3、第三邊長為7cm或9cm或11cm【分析】設(shè)三角形的第三邊長為xcm,根據(jù)三角形的三邊關(guān)系確定x的范圍,然后根據(jù)題意可求解.【詳解】解:設(shè)三角形的第三邊長為xcm,由三角形的兩邊長分別是4cm和9cm可得:,即為,∵第三邊長是奇數(shù),∴或9或11.【點睛】本題主要考查三角形的三邊關(guān)系,熟練掌握三角形的三邊關(guān)系是解題的關(guān)鍵.4、見解析【分析】先證明BC=EF,讓利用SSS證明△ABC≌△DEF即可得到∠A=∠D.【詳解】證明:∵BF=EC,∴BF+FC=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.5、(1)DE=AD+BE;(2)見解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因為∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根據(jù)AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)與(1)證法類似可證出∠AC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鹽城2025年江蘇鹽城射陽縣教育局下屬事業(yè)單位招聘教師5人筆試歷年參考題庫附帶答案詳解
- 溫州2025年浙江溫州瑞安市人民檢察院聘用制書記員招錄筆試歷年參考題庫附帶答案詳解
- 江西2025年江西生物科技職業(yè)學(xué)院招聘人事代理人員筆試歷年參考題庫附帶答案詳解
- 恩施2025年湖北恩施州巴東縣教育局所屬部分城區(qū)學(xué)校選調(diào)教師22人筆試歷年參考題庫附帶答案詳解
- 平頂山2025年河南汝州市紀委監(jiān)委機關(guān)所屬事業(yè)單位選調(diào)11人筆試歷年參考題庫附帶答案詳解
- 安康2025年陜西省安康市縣直及縣城周邊學(xué)校(單位)選聘教師44人筆試歷年參考題庫附帶答案詳解
- 嘉興浙江嘉興職業(yè)技術(shù)學(xué)院海鹽學(xué)院招聘編制外工作人員筆試歷年參考題庫附帶答案詳解
- 臺州浙江臺州玉環(huán)市文化館招聘編外工作人員筆試歷年參考題庫附帶答案詳解
- 職業(yè)人群健康促進的精準化方案
- 耗材管理績效與科室考核聯(lián)動
- 急診預(yù)檢分診課件教學(xué)
- (完整版)小學(xué)一年級20以內(nèi)加減法混合運算3000題(每頁100題-已排版)
- GB/T 46509-2025玩具中揮發(fā)性有機化合物釋放量的測定
- 2026屆浙江省杭州城區(qū)6學(xué)校數(shù)學(xué)七年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 2025年中國菜板市場調(diào)查研究報告
- 《杭州市建設(shè)工程消防驗收技術(shù)導(dǎo)則》
- 總公司與分公司承包協(xié)議6篇
- 煉鋼生產(chǎn)線自動化控制系統(tǒng)建設(shè)方案
- 塔吊安裝安全培訓(xùn)教育課件
- 民事答辯狀(信用卡糾紛)樣式
- 設(shè)備安裝施工應(yīng)急預(yù)案
評論
0/150
提交評論