版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青島版8年級數(shù)學下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖是一個放置在水平桌面上的錐形瓶,向錐形瓶中勻速注水,則水面高度與注水時間之間的函數(shù)關系圖象大致是(
)A. B.C. D.2、函數(shù)y=kx﹣k(k≠0)的圖象經(jīng)過點P,且y的值隨x的增大而增大,則點P的坐標不可以為()A.(0,3) B.(﹣1,2) C.(﹣1,﹣1) D.(3,﹣2)3、若函數(shù)y=2x+a與y=x的圖象交于點P(2,b),則關于x,y的二元一次方程組的解是()A. B. C. D.4、菱形的周長為20cm,兩個相鄰的內角的度數(shù)之比為1:2,則較短的對角線長度是(
)A. B. C. D.5、如圖,在平面直角坐標系中,O為原點,點A,C,E的坐標分別為(0,4),(8,0),(8,2),點P,Q是OC邊上的兩個動點,且PQ=2,要使四邊形APQE的周長最小,則點P的坐標為(
)A.(2,0) B.(3,0) C.(4,0) D.(5,0)6、在3.14,,,π,,0,0.1001000100001…中,無理數(shù)有(
)A.1個 B.2個 C.3個 D.4個7、數(shù)學課上,老師提出問題:“一次函數(shù)的圖象經(jīng)過點A(3,2),B(-1,-6),由此可求得哪些結論?”小明思考后求得下列4個結論:①該函數(shù)表達式為y=2x-4;②該一次函數(shù)的函數(shù)值隨自變量的增大而增大:③點P(2a,4a-4)在該函數(shù)圖象上;
④直線AB與坐標軸圍成的三角形的面積為8.其中錯誤的結論是()A.1個 B.2個 C.3個 D.4個8、直線與y軸交于點A,與x軸交于點B,直線與直線關于x軸對稱且過點(2,-1),則△ABO的面積為(
)A.8 B.1 C.2 D.4第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,是等邊三角形,M是正方形ABCD對角線BD(不含B點)上任意一點,,(點N在AB的左側),當AM+BM+CM的最小值為時,正方形的邊長為______.2、如圖是小明的身高隨年齡變化的圖像,那么小明自16歲到18歲這兩年間身高一共增高了約___________cm.3、如圖,△OAB1,△B1A1B2,△B2A2B3,…,△BnAnBn+1都是面積為的等邊三角形,邊AO在y軸上,點B1,B2,B3,…,Bn,Bn+1都在直線y=x上,點A1,A2,A3,...,An都在直線y=x的上方,觀察圖形的構成規(guī)律,用你發(fā)現(xiàn)的規(guī)律直接寫出點A2022的坐標為_____.4、在直角坐標系中等腰直角三角形在如圖所示的位置,點的橫坐標為2,將繞點按逆時針方向旋轉,得到△,則點的坐標為__.5、設一個三角形的三邊分別為a,b,c,p=(a+b+c),則有下列面積公式:S=(秦九韶公式),S=(海倫公式).一個三角形的三邊長依次為2,3,4,任選以上一個公式請直接寫出這個三角形的面積為_____.6、計算:__________.7、81的平方根是_____,64的立方根是_____.三、解答題(7小題,每小題10分,共計70分)1、如圖1,在平面直角坐標系中,已知直線l:y=kx+b與x軸交于點A,與y軸交于點B,與直線CD相交于點D,其中AC=14,C(﹣6,0),D(2,8).(1)求直線l的函數(shù)解析式;(2)如圖2,點P為線段CD延長線上的一點,連接PB,當△PBD的面積為7時,將線段BP沿著y軸方向平移,使得點P落在直線AB上的P'處,求點P′到直線CD的距離;(3)若點E為直線CD上的一點,則在平面直角坐標系中是否存在點F,使以點A,D,E,F(xiàn)為頂點的四邊形為菱形?若存在,求出所有滿足條件的點F的坐標;若不存在,請說明理由.2、某學校為進一步做好疫情防控工作,計劃購進A,B兩種口罩.已知每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍.(1)求這一批口罩平均每包的價格是多少元.(2)如果購進A,B兩種口罩共5500包,最多購進3500包A種口罩,為了使總費用最低,應購進A種口罩和B種口罩各多少包?總費用最低是多少元?3、如果一個三角形能被一條線段分割成兩個等腰三角形,那么稱這條線段為這個三角形的雙腰分割線,稱這個三角形為雙腰三角形.(1)如圖1,三角形內角分別為80°、25°、75°,請你畫出這個三角形的雙腰分割線,并標出每個等腰三角形各角的度數(shù).(2)如圖2,△ABC中,∠B=2∠C,線段AC的垂直平分線交AC于點E,交BC于點D.求證:AD是△ABC的一條雙腰分割線.(3)如圖3,已知△ABC中,∠B=64°,AD是三角形ABC的雙腰分割線,且AB=AD.①求∠C的度數(shù).②若AB=3,AC=5,求BC的長.4、濟南某社區(qū)為倡導健康生活,推進全民健身,去年購進A,B兩種健身器材若干件.經(jīng)了解,B種健身器材的單價是A種健身器材的1.5倍,用6000元購買A種健身器材比用3600元購買B種健身器材多15件.(1)A,B兩種健身器材的單價分別是多少元?(2)若今年兩種健身器材的單價和去年保持不變,該社區(qū)計劃再購進A,B兩種健身器材共60件,且B種健身器材的數(shù)量不少于A種健身器材的4倍,請你確定一種購買方案使得購進A,B兩種健身器材的費用最少.5、(﹣1)2021.6、計算或解方程:(1).(2).7、設一次函數(shù)的圖象為,一次函數(shù)的圖象為直線,若,且,我們就稱直線與直線互相平行.解答下面的問題:(1)求過點且與已知直線平行的直線的函數(shù)表達式,并畫出直線的圖象;(2)設(1)中的直線分別與軸、軸交于、兩點,直線分別與軸、軸交于、兩點,求四邊形的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)注水速度與水面高度的關系和錐形瓶的形狀,即可得到函數(shù)大致圖像,此題得解.【詳解】解:向錐形瓶中勻速注水,則水面上升的速度由慢變快,最后到了到達錐形瓶上部時,上升的速度不變,即圖象開始的曲線由緩到陡,最后是一條線段,故符合題意的圖象是選項B.故選:B.【點睛】熟練掌握自變量與因變量之間的關系,此題需要重點關注的是錐形瓶的形狀.2、B【解析】【分析】根據(jù)函數(shù)的增減性判斷一次項系數(shù),和常數(shù)的取值范圍,進而判斷函數(shù)經(jīng)過的象限,根據(jù)函數(shù)經(jīng)過的象限選出適合的答案即可.【詳解】解:∵函數(shù)y=kx﹣k(k≠0)中y的值隨x的增大而增大,∴,∴,∴函數(shù)圖形經(jīng)過一三四象限,∵點(﹣1,2)在第二象限,∴不可能為(﹣1,2),故選:B.【點睛】本題考查一次函數(shù)的解析式,一次函數(shù)的圖像,能夠熟練掌握一次函數(shù)解析式與函數(shù)圖象之間的關系是解決本題的關鍵.3、A【解析】【分析】將點代入y=x即可求得點的坐標,根據(jù)由兩個函數(shù)的交點坐標同時滿足兩個函數(shù)解析式,從而可得方程組的解.【詳解】函數(shù)y=2x+a與y=x的圖象交于點P(2,b)即二元一次方程組的解是故選A【點睛】本題考查的是利用函數(shù)的交點坐標確定方程組的解,明確交點坐標的含義與掌握數(shù)形結合的方法解題是關鍵.4、D【解析】【分析】根據(jù)已知可求得菱形的邊長及其兩內角的度數(shù),得出較短的對角線與菱形兩邊圍成的三角形是等邊三角形,即可得出結果.【詳解】如圖所示:∵菱形的周長為20cm,∴菱形的邊長為5cm,∵兩鄰角之比為1:2,∴較小角為60°,∴,∵AB=5cm,,∴為等邊三角形,∴cm,∴較短的對角線為5cm,故選D.【點睛】本題考查了菱形的性質、等邊三角形的判定與性質等知識;熟練掌握菱形的性質與等邊三角形的判定是解題的關鍵.5、C【解析】【分析】先分析四邊形APQE的周長最小,則最小,如圖,把沿軸正方向平移2個單位長度得作關于軸的對稱點則連接交軸于則所以當重合時,最小,即最小,再利用一次函數(shù)的性質求解一次函數(shù)與軸的交點的坐標即可得到答案.【詳解】解:四邊形APQE的周長PQ=2,是定值,所以四邊形APQE的周長最小,則最小,如圖,把沿軸正方向平移2個單位長度得則則作關于軸的對稱點則連接交軸于則所以當重合時,最小,即最小,設的解析式為:解得:所以的解析式為:令則則即故選C【點睛】本題考查的是利用軸對稱的性質求解四邊形的周長的最小值時點的坐標,平移的性質,利用待定系數(shù)法求解一次函數(shù)的解析式,掌握Q的位置使周長最小是解本題的關鍵.6、C【解析】【分析】根據(jù)無理數(shù)是無限不循環(huán)小數(shù)求解【詳解】解:,故無理數(shù)有:π,,0.1001000100001…,共個,故選:C.【點睛】本題考查了對實數(shù)分類的理解,掌握無理數(shù)的定義,準確求得一個數(shù)的立方根是解決本題的關鍵.7、A【解析】【分析】已知一次函數(shù)過兩個點A(3,2),B(-1,-6),可以用待定系數(shù)法求出關系式;根據(jù)關系式可以判定一個點(已知坐標)是否在函數(shù)的圖象上;根據(jù)一次函數(shù)的增減性,可以判定函數(shù)值隨自變量的變化情況,當k>0,y隨x的增大而增大;根據(jù)關系式可以求出函數(shù)圖象與x軸、y軸的交點坐標,進而可以求出直線AB與坐標軸圍成的三角形的面積,最后綜合做出結論.【詳解】解:設一次函數(shù)表達式為y=kx+b,將A(3,2),B(-1,-6)代入得:,解得:k=2,b=-4,∴關系式為y=2x-4,故結論①是正確的;由于k=2>0,y隨x的增大而增大,故結論②也是正確的;點P(2a,4a-4),其坐標滿足y=2x-4,因此該點在此函數(shù)圖象上;故結論③也是正確的;直線AB與xy軸的交點分別(2,0),(0,-4),因此與坐標軸圍成的三角形的面積為:×2×4=4≠8,故結論④是不正確的;因此,不正確的結論是④;故選:A.【點睛】本題考查待定系數(shù)法求函數(shù)關系式,一次函數(shù)的性質,一次函數(shù)圖象的點的坐標特征,以及依據(jù)關系式求出函數(shù)圖象與坐標軸的交點坐標,進而求出三角形的面積等知識點,在解題中滲透選擇題的排除法,驗證法.8、D【解析】【分析】先根據(jù)軸對稱可得直線經(jīng)過點,再利用待定系數(shù)法可得直線的解析式,從而可得點的坐標,然后利用三角形的面積公式即可得.【詳解】解:直線與直線關于軸對稱且過點,直線經(jīng)過點,將點代入直線得:,解得,則直線的解析式為,當時,,即,當時,,解得,即,則的面積為,故選:D.【點睛】本題考查了點坐標與軸對稱、求一次函數(shù)的解析式等知識,熟練掌握待定系數(shù)法是解題關鍵.二、填空題1、【解析】【分析】首先通過SAS判定,得出,因為,,得出是等邊三角形,AM+BM+CM=EN+MN+CM,而且為最小值,我們可以得出EC=,作輔助線,過點E作交CB的延長線于F,由題意求出,設正方形的邊長為x,在中,根據(jù)勾股定理求得正方形的邊長為.【詳解】∵為正三角形,∴,∴∵BD是正方形ABCD的對角線,∴∴.在和中,∴(SAS)∴在中,又∵,∴為等邊三角形,∴.∵AM+BM+CM最小值為.∴EN+MN+CM的最小值為即CE=.過點E作交CB的延長線于F,可得.設正方形的邊長為x,則BF=,.在,∵,∴解得(負值舍去).∴正方形的邊長為.故答案為:.【點睛】本題考查了等邊三角形和正方形邊相等的性質,全等三角形的判定,靈活使用輔助線,掌握直角三角的性質,熟練運用勾股定理是解題的關鍵.2、【解析】【分析】先求解時對應的一次函數(shù)的解析式,可得時的函數(shù)值,再求解時對應的函數(shù)解析式,可得時的函數(shù)值,從而可得答案.【詳解】解:當時,設函數(shù)解析式為:解得:所以一次函數(shù)為:當時,當時,設函數(shù)解析式為:所以一次函數(shù)的解析式為:當時,(cm),故答案為:15【點睛】本題考查的是利用待定系數(shù)法求解一次函數(shù)的解析式,已知自變量的值求解函數(shù)值,掌握“待定系數(shù)法求解解析式的步驟”是解本題的關鍵.3、,【解析】【分析】過作軸,垂足為,由條件可求得,利用直角三角形的性質可求得,,可求得的坐標,同理可求得、的坐標,則可得出規(guī)律,可求得的坐標.【詳解】如圖,,△,△,都是邊長為2的等邊三角形,,,在軸上,軸,軸,過作軸,垂足為,點在在直線上,設,,是面積為的等邊三角形,都是邊長為的等邊三角形,,,的坐標為,,同理,、,,的坐標為,,故答案為,.【點睛】本題為規(guī)律型題目,利用等邊三角形和直角三角形的性質求得的坐標,從而總結出點的坐標的規(guī)律是解題的關鍵.4、【解析】【分析】過點A作于C,過點作于,根據(jù)等腰直角三角形的性質求出,再根據(jù)旋轉的性質可得,,然后寫出點的坐標即可.【詳解】解:如圖,過點作于,過點作于,是等腰直角三角形,點的橫坐標為2,,△是繞點逆時針旋轉得到,,,,點的坐標為.故答案為:.【點睛】本題考查了坐標與圖形變化----旋轉,主要利用了等腰直角三角形的性質,旋轉變換只改變圖形的位置不改變圖形的形狀與大小的性質.5、##【解析】【分析】選取海倫公式進行計算,根據(jù)公式將三邊長以及的值代入求解即可.【詳解】解:∵一個三角形的三邊長依次為2,3,4,∴p=S=故答案為:【點睛】本題考查了二次根式的混合運算,正確的計算是解題的關鍵.6、0【解析】【分析】先分別化簡負指數(shù)冪、零指數(shù)冪、立方根,然后再計算,即可得到答案.【詳解】解:;故答案為:0.【點睛】本題考查了負指數(shù)冪、零指數(shù)冪以及立方根,解題的關鍵是掌握運算法則,正確的進行化簡.7、
±9
4【解析】【分析】根據(jù)平方根與立方根的性質即可求出答案.【詳解】解:∵∴81的平方根為±9,∵∴64的立方根為4.故答案為:±9,4.【點睛】本題考查立方根與平方根的概念,解題的關鍵是正確理解平方根與立方根的概念.三、解答題1、(1)直線l的函數(shù)解析式為(2)點到直線的距離為(3)存在點或或或,使以點A,D,E,F(xiàn)為頂點的四邊形為菱形.【解析】【分析】(1)用待定系數(shù)法即可求解;(2)由△PBD的面積求出點P的坐標,進而求出點P'(5,4),構建△P'DN用解直角三角形的方法即可求解;(3)分AD是菱形的邊、AD是菱形的對角線兩種情況,利用圖象平移和中點公式,分別求解即可.(1)解:∵,點A在點C右側,∴.∵直線l與直線相交于點,∴解得
∴直線l的函數(shù)解析式為.(2)解:如圖1,過點P作軸于點N,作軸,交于點,過點作于點M,過點D作軸于點E,設與y軸交于點F,設直線的解析式為,∵,∴解得∴直線的解析式為.∴.∴∵,∴∵直線l的解析式為,∴.∴.∴.設,∵,∴,即,解得.∴.∵將線段沿著y軸方向平移,使得點P落在直線上的處,∴.∴.∴.∵,∴.∵,∴是等腰直角三角形.∴,即點到直線的距離為.(3)解:①如圖2,當、為邊時,∵,∴.∵四邊形是菱形,∴.∵直線的解析式為,∴可設直線的解析式為.∵,∴,解得.∴直線的解析式為.設,∴,解得.∴.當、為邊時,∵,∴.∵四邊形是菱形,∴.∵直線的解析式為,∴可設直線的解析式為.∵,∴-,解得.∴直線的解析式為.設,∴,解得或(舍去),∴.②如圖3,當為對角線時,則.由①得直線的解析式為.設,∵,∴,解得.∴.綜上所述,存在點或或或使以點A,D,E,F(xiàn)為頂點的四邊形為菱形.【點睛】本題考查的是二次函數(shù)綜合運用,涉及到二次函數(shù)的性質、平行四邊形的性質、圖形的平移、面積的計算等,分類求解解題的關鍵.2、(1)20元(2)購進A種口罩3500包,B種口罩2000包時,能使總費用最低,總費用最低是111000元.【解析】【分析】(1)設這一批口罩平均每包的價格是x元,根據(jù)“每箱A種口罩比每箱B種口罩多10包,每箱A種口罩和每箱B種口罩的價格分別是630元和600元,而每包A種口罩和每包B種口罩的價格分別是這一批口罩平均每包價格的0.9倍和1.2倍”列分式方程解答即可;(2)設購進A種口罩t包,這批口罩的總費用為w元,根據(jù)題意得出w與t的函數(shù)關系式,再根據(jù)t的取值范圍以及一次函數(shù)的性質解答即可.(1)解:設這一批口罩平均每包的價格是x元,根據(jù)題意得:,解得x=20,經(jīng)檢驗,x=20是原方程的解,并符合題意,答:這一批口罩平均每包的價格是20元;(2)解:由(1)可知,A種口罩每包價格為20×0.9=18(元),B種口罩每包價格為20×1.2=24(元),設購進A種口罩t包,這批口罩的總費用為w元,根據(jù)題意得:w=18t+24(5500﹣t)=﹣6t+132000,∵w是t的一次函數(shù),k=﹣6<0,∴w隨t的增大而減小,由∵t≤3500,∴當t=3500時,w最小,此時B種口罩有:5500﹣3500=2000(包),w=﹣6×3500+132000=111000,答:購進A種口罩3500包,B種口罩2000包時,能使總費用最低,總費用最低是111000元.【點睛】此題主要考查了分式方程的應用,一次函數(shù)的應用,正確得出等量關系是解題關鍵.3、(1)見解析(2)見解析(3)①∠C=23°;②BC=【解析】【分析】(1)從三個頂點出發(fā)各作一條線段,根據(jù)等邊對等角,求出角度,看是否符合另一個三角形也是等腰三角形;(2)根據(jù)等腰三角形的判定和性質求解可得.(3)①由AD是三角形ABC的雙腰分割線,且AB=AD.得AB=AD=CD,∠B=∠ADB=64°,從而求得∠C=∠CAD=∠ADB=32°;②過點A作AE⊥BC于點E,Rt△ABE中,AE2=AB2-BE2=32-x2,Rt△ACE中,AE2=52-(3+x)2,得32-x2=52-(3+x)2,解方程即可.(1)解:線段AD是△ABC的雙腰分割線,每個等腰三角形各角的度數(shù);(2)證明:∵線段AC的垂直平分線交AC于點E,∴AD=CD,∴△ADC是等腰三角形,∴∠C=∠DAC,∴∠ADB=∠C+∠DAC=2∠C,∵∠B=2∠C,∴∠B=∠ADB,∴AB=AD,∴△ABD是等腰三角形,∴AD是△ABC的一條雙腰分割線.(3)①∵AD是三角形ABC的雙腰分割線,且AB=AD.∴AB=AD=CD,∴∠B=∠ADB=64°,∵AD=CD,∴∠C=∠CAD=∠ADB=32°;②過點A作AE⊥BC于點E,∵AB=AD=CD=3,∴BE=DE,設BE為x,∵Rt△ABE中,AE2=AB2-BE2=32-x2,Rt△ACE中,AE2=52-(3+x)2,∴32-x2=52-(3+x)2,解得,x=,∴BC=×2+3=.【點睛】本題考查了作圖-應用與設計作圖,解題的關鍵是掌握等腰三角形的判定和性質.4、(1)A,B兩種健身器材的單價分別是240元,360元(2)購買A種健身器材12件B種健身器材48件時費用最小【解析】【分析】(1)設A種健身器材的單價為x元/件,B種健身器材的單價為1.5x元/件,根據(jù)“用6000元購買A種健身器材比用3600元購買B種健身器材多15件”,列出分式方程,解之即可得出結論;(2)設購買A種健身器材m件,則購買B種的健身器材(60-m)件,B種健身器材的數(shù)量不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 九年級英語質量分析報告
- 防范患者跌倒、墜床的管理制度
- 供電設備運行維護管理方案
- 項目風險評估與管理分析報告
- 物流公司安全生產(chǎn)管理制度文本
- Mysql服務器優(yōu)化配置方案
- 美發(fā)行業(yè)競爭分析報告
- 視頻拍攝剪輯師行業(yè)分析報告
- 芯片行業(yè)工程事故分析報告
- 網(wǎng)格治理安全排查工作方案
- 2025年加油站培訓數(shù)質量標準課件
- 《電梯基本結構》課件
- 《大學生國防教育教程》全套教學課件
- 兒童發(fā)育遲緩的早期干預與教育策略
- 刀模管理制度
- 揮發(fā)性有機物(VOCs)執(zhí)法監(jiān)測能力建設項目可行性實施方案
- 工程施工月報表
- 鍋爐外部檢驗報告
- GB/T 3098.6-2023緊固件機械性能不銹鋼螺栓、螺釘和螺柱
- 音標拼讀練習(彩色版)
- GB/T 6672-2001塑料薄膜和薄片厚度測定機械測量法
評論
0/150
提交評論