版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆遼寧省葫蘆島第六高級中學(xué)高三數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.2.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.3.設(shè)函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,4.已知拋物線的焦點為,是拋物線上兩個不同的點,若,則線段的中點到軸的距離為()A.5 B.3 C. D.25.若執(zhí)行如圖所示的程序框圖,則輸出的值是()A. B. C. D.46.已知不等式組表示的平面區(qū)域的面積為9,若點,則的最大值為()A.3 B.6 C.9 D.127.設(shè)拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.8.已知集合,則的值域為()A. B. C. D.9.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.10.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或011.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細(xì)算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里12.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中項的系數(shù)與項的系數(shù)分別為135與,則展開式所有項系數(shù)之和為______.14.一個算法的偽代碼如圖所示,執(zhí)行此算法,最后輸出的T的值為________.15.展開式中項的系數(shù)是__________16.設(shè),則_____,(的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準(zhǔn)線與圓C相切.(1)求橢圓E的方程;(2)設(shè)過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當(dāng)時,求直線l的方程.18.(12分)在平面直角坐標(biāo)系中,設(shè),過點的直線與圓相切,且與拋物線相交于兩點.(1)當(dāng)在區(qū)間上變動時,求中點的軌跡;(2)設(shè)拋物線焦點為,求的周長(用表示),并寫出時該周長的具體取值.19.(12分)設(shè)函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時,.20.(12分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.21.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對稱軸方程為且,求的值.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點在上,點在上,求的最小值以及此時的直角坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由題得,,又,聯(lián)立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C本題主要考查了雙曲線的簡單幾何性質(zhì),圓的方程的有關(guān)計算,考查了學(xué)生的計算能力.2.A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A本題考查折線圖與柱形圖,屬于基礎(chǔ)題.3.D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.4.D【解析】
由拋物線方程可得焦點坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點的橫坐標(biāo),即為中點到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點到軸的距離為.故選:D.本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點橫坐標(biāo)的和.5.D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現(xiàn),由此可得結(jié)論.【詳解】;如此循環(huán)下去,當(dāng)時,,此時不滿足,循環(huán)結(jié)束,輸出的值是4.故選:D.本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結(jié)論.6.C【解析】
分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個頂點,即求出邊界線的交點坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時,由圖可得當(dāng)過點時,取得最大值9,故選C.點睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.7.B【解析】
由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標(biāo),代入拋物線方程求出參數(shù),可得點坐標(biāo),從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設(shè)為,如圖,由于,,∴,∴,,∴點坐標(biāo)為,代入拋物線方程得,,∴,.故選:B.本題考查拋物線與圓相交問題,解題關(guān)鍵是發(fā)現(xiàn)原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標(biāo),問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.8.A【解析】
先求出集合,化簡=,令,得由二次函數(shù)的性質(zhì)即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題9.B【解析】
選B.考點:圓心坐標(biāo)10.C【解析】
求出函數(shù)的導(dǎo)函數(shù),當(dāng)時,只需,即,令,利用導(dǎo)數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當(dāng)時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當(dāng)時,由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當(dāng)時,,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C本題考查利用導(dǎo)數(shù)研究函數(shù)的零點問題,零點存在性定理的應(yīng)用,屬于中檔題.11.C【解析】
設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.12.A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.64【解析】
由題意先求得的值,再令求出展開式中所有項的系數(shù)和.【詳解】的展開式中項的系數(shù)與項的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64本題考查了二項式定理,考查了賦值法求多項式展開式的系數(shù)和,屬于基礎(chǔ)題.14.【解析】
由程序中的變量、各語句的作用,結(jié)合流程圖所給的順序,模擬程序的運行,即可得到答案.【詳解】根據(jù)題中的程序框圖可得:,執(zhí)行循環(huán)體,,不滿足條件,執(zhí)行循環(huán)體,,此時,滿足條件,退出循環(huán),輸出的值為.故答案為:本題主要考查了程序和算法,依次寫出每次循環(huán)得到的,的值是解題的關(guān)鍵,屬于基本知識的考查.15.-20【解析】
根據(jù)二項式定理的通項公式,再分情況考慮即可求解.【詳解】解:展開式中項的系數(shù):二項式由通項公式當(dāng)時,項的系數(shù)是,當(dāng)時,項的系數(shù)是,故的系數(shù)為;故答案為:本題主要考查二項式定理的應(yīng)用,注意分情況考慮,屬于基礎(chǔ)題.16.7201【解析】
利用二項展開式的通式可求出;令中的,得兩個式子,代入可得結(jié)果.【詳解】利用二項式系數(shù)公式,,故,,故(=,故答案為:720;1.本題考查二項展開式的通項公式的應(yīng)用,考查賦值法,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)或.【解析】
(1)圓的方程已知,根據(jù)條件列出方程組,解方程即得;(2)設(shè),,顯然直線l的斜率存在,方法一:設(shè)直線l的方程為:,將直線方程和橢圓方程聯(lián)立,消去,可得,同理直線方程和圓方程聯(lián)立,可得,再由可解得,即得;方法二:設(shè)直線l的方程為:,與橢圓方程聯(lián)立,可得,將其與圓方程聯(lián)立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準(zhǔn)線與圓C:相切.解得,,橢圓方程為:.(2)法1:設(shè),,顯然直線l的斜率存在,設(shè)直線l的方程為:.直線方程和橢圓方程聯(lián)立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯(lián)立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設(shè),,當(dāng)直線l與x軸重合時,不符題意.設(shè)直線l的方程為:.由方程組消去x得,,解得.由方程組消去x得,,解得.又,則有.即,解得,故直線l的方程為或.本題考查求橢圓的標(biāo)準(zhǔn)方程,以及直線和橢圓的位置關(guān)系,考查學(xué)生的分析和運算能力.18.(1).(2)的周長為,時,的周長為【解析】
(1)設(shè)的方程為,根據(jù)題意由點到直線的距離公式可得,將直線方程與拋物線方程聯(lián)立可得,設(shè)?坐標(biāo)分別是?,利用韋達定理以及中點坐標(biāo)公式消參即可求解.(2)根據(jù)拋物線的定義可得,由(1)可得,再利用弦長公式即可求解.【詳解】(1)設(shè)的方程為于是聯(lián)立設(shè)?坐標(biāo)分別是?則設(shè)的中點坐標(biāo)為,則消去參數(shù)得:(2)設(shè),,由拋物線定義知,,∴由(1)知∴,,的周長為時,的周長為本題考查了動點的軌跡方程、直線與拋物線的位置關(guān)系、拋物線的定義、弦長公式,考查了計算能力,屬于中檔題.19.(1)(2)見解析【解析】
(1)在上單調(diào)遞減等價于在恒成立,分離參數(shù)即可解決.(2)先對求導(dǎo),化簡后根據(jù)零點存在性定理判斷唯一零點所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調(diào)遞減.∴,.令,,時,;時,,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數(shù).又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時,.此題考查函數(shù)定區(qū)間上單調(diào),和零點存在性定理等知識點,難點為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.20.(1)證明見解析;(2).【解析】
(1)取中點,連接,,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點D,連接,.因為,,所以且,因為,平面,平面,所以平面.又平面,所以;(2)解:因為平面,平面,所以平面平面,過N作于E,則平面,因為平面平面,,平面平面,平面,所以平面,又因為平面,所以,由于,所以所以,所以.本題考查線面垂直,考查三棱錐體積的計算,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年注冊安全工程師題庫300道附參考答案(培優(yōu)b卷)
- 2025上半年山東濱州科技職業(yè)學(xué)院專任教師招聘10人參考筆試題庫附答案解析
- 2025浙江蕭山醫(yī)院醫(yī)共體總院招聘編外工作人員10人考試重點試題及答案解析
- 2025吉林白山市長白朝鮮族自治縣融媒體中心招聘急需緊缺專業(yè)技術(shù)人員4人備考核心試題附答案解析
- 2025年下半年湖南懷化市部分市直事業(yè)單位招聘、選調(diào)合計20人參考題庫附答案
- 2025下半年廣東茂名高州市市屬國有企業(yè)招聘企業(yè)人員41人筆試重點題庫及答案解析
- 廣東省農(nóng)村信用社聯(lián)合社2026校園招聘備考核心題庫及答案解析
- 東莞市麻涌實業(yè)投資集團有限公司招聘工作人員參考題庫附答案
- 2025年合肥共達職業(yè)技術(shù)學(xué)院專任教師公開招聘9人考試核心試題及答案解析
- 2025年燃?xì)鈴臉I(yè)人員考試題庫及答案
- 2025秋湘美版(新教材)小學(xué)美術(shù)三年級上冊知識點及期末測試卷及答案
- 2025年人力資源部工作總結(jié)暨2026年工作計劃
- 2025中原農(nóng)業(yè)保險股份有限公司招聘67人筆試備考重點題庫及答案解析
- GB/T 27572-2025橡膠密封件110 ℃熱水供應(yīng)管道的管接口密封圈材料規(guī)范
- 紅日藥業(yè)醫(yī)學(xué)事務(wù)專員面試流程及題庫含答案
- 建筑工程管理??茖嵺`報告
- 2025年國家統(tǒng)計局齊齊哈爾調(diào)查隊公開招聘公益性崗位5人考試筆試備考試題及答案解析
- 2025湖北武漢市公安局蔡甸區(qū)分局第二批招聘警務(wù)輔助人員43人考試筆試備考題庫及答案解析
- 文庫發(fā)布:Java數(shù)組課件
- 《增值稅法》實施解析及應(yīng)對指南(2026版)課件
- 學(xué)堂在線 雨課堂 學(xué)堂云 海權(quán)與制海權(quán) 結(jié)業(yè)考試答案
評論
0/150
提交評論