版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》同步測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,矩形ABCD的面積為1cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO2014C2015B的面積為()cmA.
B.
C.
D.2、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學定理之一,是數(shù)形結合的重要紐帶.數(shù)學家歐幾里得利用如圖驗證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點C作CJ⊥DE于點J,交AB于點K.設正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結論有()A.1個 B.2個 C.3個 D.4個3、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點E到點B的距離為()A. B. C. D.4、將一張長方形紙片ABCD按如圖所示的方式折疊,AE、AF為折痕,點B、D折疊后的對應點分別為、,若=10°,則∠EAF的度數(shù)為()A.40° B.45° C.50° D.55°5、直角三角形的兩條直角邊分別為5和12,那么這個三角形的斜邊上的中線長為()A.6 B.6.5 C.10 D.13第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在正方形ABCD中,點M,N為CD,BC上的點,且DM=CN,AM與DN交于點P,連接AN,點Q為AN中點,連接PQ,若AB=10,DM=4,則PQ的長為__________________.2、如圖,在?ABCD中,點E是對角線AC上一點,過點E作AC的垂線,交邊AD于點P,交邊BC于點Q,連接PC、AQ,若AC=6,PQ=4,則PC+AQ的最小值為________________.3、如圖,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,點D在CB所在直線上運動,以AD為邊作等邊三角形ADE,則CB=___.在點D運動過程中,CE的最小值為___.4、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.5、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動,如圖所示,AD=2,A點沿墻往下滑動到O點的過程中,正方形的中心點M到O的最小值是______.三、解答題(5小題,每小題10分,共計50分)1、在長方形紙片ABCD中,點E是邊CD上的一點,將△AED沿AE所在的直線折疊,使點D落在點F處.
(1)如圖1,若點F落在對角線AC上,且∠BAC=54°,則∠DAE的度數(shù)為________°.(2)如圖2,若點F落在邊BC上,且AB=CD=6,AD=BC=10,求CE的長.(3)如圖3,若點E是CD的中點,AF的延長線交BC于點G,且AB=CD=6,AD=BC=10,求CG的長.2、如圖所示,在△ABC中,AD是邊BC上的高,CE是邊AB上的中線,G是CE的中點,AB=2CD,求證:DG⊥CE.
3、如圖:已知△BCD是等腰直角三角形,且∠DCB=90°,過點D作AD∥BC,使AD=BC,在AD上取一點E,連結CE,點B關于CE的對稱點為B1,連結B1D,并延長B1D交BA的延長線于點F,延長CE交B1F于點G,連結BG.(1)求證:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG長;(3)在(2)的條件下,H為直線BG上一點,使△HCG為等腰三角形,則所有滿足要求的BH的長是.(直接寫出答案)4、如圖,在△ABC中,AB=AC,AD⊥BC于點D.(1)若DE∥AB交AC于點E,證明:△ADE是等腰三角形;(2)若BC=12,DE=5,且E為AC中點,求AD的值.5、如圖,已知矩形中,點,分別是,上的點,,且.(1)求證:;(2)若,求:的值.-參考答案-一、單選題1、C【解析】【分析】根據(jù)“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進行求解.【詳解】解:∵O1為矩形ABCD的對角線的交點,∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對角線交于點O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點睛】本題主要考查矩形的性質與平行四邊形的性質,熟練掌握矩形的性質與平行四邊形的性質是解題的關鍵.2、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點B作BM⊥IA,交IA的延長線于點M,根據(jù)邊的關系得出S△ABI=S1,即可得出②正確,過點C作CN⊥DA交DA的延長線于點N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點B作BM⊥IA,交IA的延長線于點M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點C作CN⊥DA交DA的延長線于點N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯誤;綜上,共有3個正確的結論,故選:C.【點睛】本題主要考查勾股定理,正方形的性質,矩形性質,全等三角形的判定和性質等知識,熟練掌握勾股定理和全等三角形的判定和性質是解題的關鍵.3、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點E到點B的距離為:.故選:C.【點睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運算,利用對折得到,再利用勾股定理列方程是解本題的關鍵.4、A【解析】【分析】可以設∠EAD′=α,∠FAB′=β,根據(jù)折疊可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根據(jù)四邊形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【詳解】解:設∠EAD′=α,∠FAB′=β,根據(jù)折疊性質可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四邊形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.則∠EAF的度數(shù)為40°.故選:A.【點睛】本題通過折疊變換考查學生的邏輯思維能力,解決此類問題,應結合題意,最好實際操作圖形的折疊,易于找到圖形間的關系.5、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長==6.5.故選:B.【點睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關鍵.二、填空題1、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點睛】本題考查正方形的性質,全等三角形的判定和性質,直角三角形斜邊上的中線,勾股定理等知識,解題的關鍵是熟練掌握正方形的性質.2、【解析】【分析】利用平行四邊形的知識,將的最小值轉化為的最小值,再利用勾股定理求出MC的長度,即可求解;【詳解】過點A作且,連接MP,∴四邊形是平行四邊形,∴,將的最小值轉化為的最小值,當M、P、C三點共線時,的最小,∵,,∴,在中,;故答案是:.【點睛】本題主要考查了平行線的判定與性質,勾股定理,準確計算是解題的關鍵.3、4【解析】【分析】以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,由直角三角形可求BC=4,,由“SAS”可證△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此時,故CE的最小值是.【詳解】解:以AC為邊作正△AFC,并作FH⊥AC,垂足為點H,連接FD、CE,如圖:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等邊三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴當FD⊥BD時,F(xiàn)D最小,此時∠FDC=∠DCH=∠CHF=90°,∴四邊形FDCH是矩形,∴,∴CE的最小值是.故答案為:4,.【點睛】本題主要考查了等邊三角形的性質,全等三角形的性質與判定,矩形的性質與判定,含30度角的直角三角形的性質,勾股定理等等,解題的關鍵在于能夠熟練掌握等邊三角形的性質.4、【解析】【分析】設BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關于x的方程,求解x即可.【詳解】解:設BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質及翻轉折疊的性質,勾股定理,拓展一元一次方程,準確運用題目中的條件表示出EF列出方程式解題的關鍵.5、2【解析】【分析】取的中點為,連接,根據(jù)直角三角形的性質求出OG和MG的長,然后根據(jù)兩點之間線段最短即可求解.【詳解】解:取的中點為,連接,為正方形,,,為中點,,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當三點共線時,即,故答案為:2.【點睛】本題考查了正方形的性質,直角三角形斜邊的中線等于斜邊的一半,以及兩點之間線段最短等知識,正確作出輔助線是解答本題的關鍵.三、解答題1、(1)18;(2)CE的長為;(3)CG的長為.【分析】(1)根據(jù)矩形的性質得∠DAC=36°,根據(jù)折疊的性質得∠DAE=18°;(2)根據(jù)矩形性質得∠B=∠C=90°,BC=AD=10,CD=AB=6,根據(jù)折疊的性質得AF=AD=10,EF=ED,根據(jù)勾股定理得BF=8,則CF=2,設CE=x,則EF=ED=6﹣x,根據(jù)勾股定理得,解得:,即CE的長為;(3)連接EG,,由題意得DE=CE,由折疊的性質得:AF=AD=10,∠AFE=∠D=90°,F(xiàn)E=DE,則∠EFG=∠C=90°,由HL得Rt△CEG≌Rt△FEG,則CG=FG,設CG=FG=y(tǒng),則AG=10+y,BG=10﹣y,在Rt△ABG中,由勾股定理得,解得,即CG的長為.【詳解】解:(1)∵四邊形ABCD是矩形,∴∠DAB=90°,∴∠DAC=90°-∠BAC=90°-54°=36°,∵△AED沿AE所在的直線折疊,使點D落在點F處,∴∠DAE=∠EAC=∠DAC=×36°=18°,故答案為:18;(2)∵四邊形ABCD是長方形,∴∠B=∠C=90°,BC=AD=10,CD=AB=6,由折疊的性質得:AF=AD=10,EF=ED,∴,∴CF=BC﹣BF=10﹣8=2,設CE=x,則EF=ED=6﹣x,在Rt△CEF中,由勾股定理得:,解得:,即CE的長為;(3)解:如圖所示,連接EG,∵點E是CD的中點,∴DE=CE,由折疊的性質得:AF=AD=10,∠AFE=∠D=90°,F(xiàn)E=DE,∴∠EFG=∠C=90°,在Rt△CEG和Rt△FEG中,,∴Rt△CEG≌Rt△FEG(HL),∴CG=FG,設CG=FG=y(tǒng),則AG=AF+FG=10+y,BG=BC﹣CG=10﹣y,在Rt△ABG中,由勾股定理得:,解得:,即CG的長為.【點睛】本題考查了矩形的性質,折疊的性質,全等三角形的判定與性質,勾股定理,解題的關鍵是掌握并靈活運用這些知識點.2、見解析【分析】連接DE,根據(jù)直角三角形的性質得到DE=AB,再根據(jù)AB=2CD,得到CD=AB,從而可得CD=DE,根據(jù)等腰三角形的三線合一證明即可.【詳解】證明:連接DE,如圖:
∵AD是邊BC上的高,CE是邊AB上的中線,∴AD⊥BD,E是AB的中點,∴DE=AB,∵AB=2CD,∴CD=AB,∴CD=DE,∵G是CE的中點,∴DG⊥CE.【點睛】本題考查了直角三角形的性質、等腰三角形的判定和性質.解題的關鍵是掌握直角三角形的性質、等腰三角形的判定和性質,明確在直角三角形中,斜邊上的中線等于斜邊的一半.3、(1)證明過程見解析;(2)BG的長為4;(3)2或6﹣4或或6+4【分析】(1)連結BB1交CG于點M,交CD于點Q,證明四邊形ABCD是正方形,再根據(jù)對稱的性質得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)設BG交AD于點N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根據(jù)勾股定理得到BM,最后利用勾股定理計算即可;(3)根據(jù)點G的位置不同分4種情況進行討論計算即可;【詳解】(1)證明:如圖1,連結BB1交CG于點M,交CD于點Q,∵AD∥BC,AD=BC,∴四邊形ABCD是平行四邊形,∵BC=DC,∠BCD=90°,∴四邊形ABCD是正方形,∵點B1與點B關于CE對稱,∴CE垂直平分BB1,∴BC=B1C,BG=B1G,∵CG=CG,∴△BCG≌△B1CG(SSS),∴∠CBG=∠CB1G,∵DC=B1C,∴∠CDB1=∠CB1G,∴∠CBG=∠CDB1.(2)解:如圖1,設BG交AD于點N,∵BC=CD=AD=10,∴DE=AD=5,∵∠CDE=90°,∴CE=,∵∠BCQ=∠CDE=∠BMC=90°,∴∠CBQ=90°﹣∠BCM=∠DCE,∴△BCQ≌△CDE(ASA),∴CQ=DE=5,BQ=CE=5,∵CM⊥BQ,∴S△BCQ=BQ?CM=BC?CQ,∴,∴CM=2,∴BM=,∵∠ABC=∠BAN=90°,∴∠GDN+∠CDB1=90°,∠ABN+∠CBG=90°,∴∠GDN=∠ABN,∵∠GND=∠ANB,∴∠GDN+∠GND=∠ABN+∠ANB=90°,∴∠BGB1=90°,∴∠BGM=∠B1GM=∠BGB1=45°,∵∠BMG=90°,∴∠BMG=∠BGM=45°,∴GM=BM=4,∴BG=,∴BG的長為4.(3)解:如圖1,由(2)得CM=2,GM=4,∴CG=2+4=6,如圖2,CH=CG=6,則∠CHG=∠CGH=45°,∴∠GCH=90°,∴GH=,∴BH=GH﹣BG=6﹣4=2;如圖3,HG=CG=6,且點H與點B在直線FB1的同側,∴BH=HG﹣BG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年衛(wèi)生職稱考試(中醫(yī)耳鼻喉科學相關專業(yè)知識主治醫(yī)師)經(jīng)典試題及答案解析
- 冷拉絲工操作知識強化考核試卷含答案
- 渣油熱加工工安全技能測試模擬考核試卷含答案
- 銅管樂器制作工安全培訓效果考核試卷含答案
- 2025年甘肅省蘭州新區(qū)石化產(chǎn)業(yè)投資集團有限公司法務專干、造價工程師、會計崗位招聘考試筆試備考試題及答案解析
- 2025廣西南寧市馬山縣人力資源和社會保障局招聘外聘工作人員2人筆試考試備考試題及答案解析
- 矯形器裝配工安全風險強化考核試卷含答案
- 2026福建三明市教育局開展“揚帆綠都·圓夢三明”教育類高層次人才專項公開招聘44人筆試考試參考試題及答案解析
- 2026年陜西能源職業(yè)技術學院教師招聘(42人)考試筆試參考題庫附答案解析
- 2026年山西國際商務職業(yè)學院單招職業(yè)傾向性考試題庫及參考答案詳解1套
- DB32T 5124.3-2025 臨床護理技術規(guī)范 第3部分:成人危重癥患者有創(chuàng)動脈血壓監(jiān)測
- 松陵一中分班試卷及答案
- 《小米廣告宣傳冊》課件
- 勞務派遣公司工作方案
- 物理趣味題目試題及答案
- 華師大版數(shù)學七年級上冊《4.3 立體圖形的表面展開圖》聽評課記錄
- 2023-2024學年四川省成都市高二上學期期末調(diào)研考試地理試題(解析版)
- 陜西單招數(shù)學試題及答案
- 應收賬款債權轉讓協(xié)議
- 四川省宜賓市長寧縣2024-2025學年九年級上學期期末化學試題(含答案)
- 可行性報告商業(yè)計劃書
評論
0/150
提交評論