2026屆上海市第二工業(yè)大學附屬龔路中學數學高三上期末檢測模擬試題_第1頁
2026屆上海市第二工業(yè)大學附屬龔路中學數學高三上期末檢測模擬試題_第2頁
2026屆上海市第二工業(yè)大學附屬龔路中學數學高三上期末檢測模擬試題_第3頁
2026屆上海市第二工業(yè)大學附屬龔路中學數學高三上期末檢測模擬試題_第4頁
2026屆上海市第二工業(yè)大學附屬龔路中學數學高三上期末檢測模擬試題_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆上海市第二工業(yè)大學附屬龔路中學數學高三上期末檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.馬林●梅森是17世紀法國著名的數學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們?yōu)榱思o念梅森在數論方面的這一貢獻,將形如2P﹣1(其中p是素數)的素數,稱為梅森素數.若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數的個數是()A.3 B.4 C.5 D.62.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}3.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經過點,則橢圓離心率的取值范圍是()A. B. C. D.4.已知的內角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.5.設命題p:>1,n2>2n,則p為()A. B.C. D.6.已知的值域為,當正數a,b滿足時,則的最小值為()A. B.5 C. D.97.已知是第二象限的角,,則()A. B. C. D.8.設,其中a,b是實數,則()A.1 B.2 C. D.9.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則10.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.11.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.312.在的展開式中,含的項的系數是()A.74 B.121 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有以下四個命題:①在中,的充要條件是;②函數在區(qū)間上存在零點的充要條件是;③對于函數,若,則必不是奇函數;④函數與的圖象關于直線對稱.其中正確命題的序號為______.14.已知,,其中,為正的常數,且,則的值為_______.15.如圖,在菱形ABCD中,AB=3,,E,F分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)16.根據如圖的算法,輸出的結果是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.18.(12分)在直角坐標系中,曲線的參數方程為(為參數),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.19.(12分)已知函數,其中為實常數.(1)若存在,使得在區(qū)間內單調遞減,求的取值范圍;(2)當時,設直線與函數的圖象相交于不同的兩點,,證明:.20.(12分)已知函數.(1)若是函數的極值點,求的單調區(qū)間;(2)當時,證明:21.(12分)已知等差數列an,和等比數列b(I)求數列{an}(II)求數列n2an?a22.(10分)如圖,在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,AB=AA1,M,N分別是AC,B1C1的中點.求證:(1)MN∥平面ABB1A1;(2)AN⊥A1B.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執(zhí)行循環(huán)體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執(zhí)行循環(huán)體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執(zhí)行循環(huán)體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執(zhí)行循環(huán)體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環(huán),結束,故若執(zhí)行如圖所示的程序框圖,則輸出的梅森素數的個數是5,故選:C.本題主要考查程序框圖,屬于基礎題.2.A【解析】

解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.此題考查求集合的并集,關鍵在于準確求解不等式,根據描述法表示的集合,準確寫出集合中的元素.3.D【解析】

根據題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.4.B【解析】

延長到,使,連接,則四邊形為平行四邊形,根據余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據中線作出平行四邊形是關鍵,是中檔題.5.C【解析】根據命題的否定,可以寫出:,所以選C.6.A【解析】

利用的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域為,∴,∴,∴,當且僅當時取等號,∴的最小值為.故選:A.本題主要考查了對數復合函數的值域運用,同時也考查了基本不等式中“1的運用”,屬于中檔題.7.D【解析】

利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.8.D【解析】

根據復數相等,可得,然后根據復數模的計算,可得結果.【詳解】由題可知:,即,所以則故選:D本題考查復數模的計算,考驗計算,屬基礎題.9.D【解析】

根據線面平行和面面平行的性質,可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據線面平行和面面平行的性質,有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D本題考查了空間中的平行垂直關系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.10.D【解析】

作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.11.A【解析】

分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.12.D【解析】

根據,利用通項公式得到含的項為:,進而得到其系數,【詳解】因為在,所以含的項為:,所以含的項的系數是的系數是,,故選:D本題主要考查二項展開式及通項公式和項的系數,還考查了運算求解的能力,屬于基礎題,二、填空題:本題共4小題,每小題5分,共20分。13.①【解析】

由三角形的正弦定理和邊角關系可判斷①;由零點存在定理和二次函數的圖象可判斷②;由,結合奇函數的定義,可判斷③;由函數圖象對稱的特點可判斷④.【詳解】解:①在中,,故①正確;②函數在區(qū)間上存在零點,比如在存在零點,但是,故②錯誤;③對于函數,若,滿足,但可能為奇函數,故③錯誤;④函數與的圖象,可令,即,即有和的圖象關于直線對稱,即對稱,故④錯誤.故答案為:①.本題主要考查函數的零點存在定理和對稱性、奇偶性的判斷,考查判斷能力和推理能力,屬于中檔題.14.【解析】

把已知等式變形,展開兩角和與差的三角函數,結合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數,.故答案為:.本題考查兩角和與差的三角函數,考查數學轉化思想方法,屬于中檔題.15.【解析】

根據題意,設,則,所以,解得,所以,從而有.16.55【解析】

根據該For語句的功能,可得,可得結果【詳解】根據該For語句的功能,可得則故答案為:55本題考查For語句的功能,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關鍵是證明線線平行,一般構造平行四邊形,則對邊平行,或是構造三角形中位線.18.(1),;(2).【解析】

(1)在曲線的參數方程中消去參數,可得出曲線的普通方程,將曲線的極坐標方程變形為,進而可得出曲線的直角坐標方程;(2)求出點到直線的最大距離,以及直線截圓所得弦長,利用三角形的面積公式可求得面積的最大值.【詳解】(1)由曲線的參數方程得,.所以,曲線的普通方程為,將曲線的極坐標方程變形為,所以,曲線的直角坐標方程為;(2)曲線是圓心為,半徑為為圓,圓心到直線的距離為,所以,點到直線的最大距離為,,因此,的面積為最大值為.本題考查曲線的參數方程、極坐標方程與普通方程之間的相互轉換,同時也考查了直線截圓所形成的三角形面積最值的計算,考查計算能力,屬于中等題.19.(1);(2)見解析.【解析】

(1)將所求問題轉化為在上有解,進一步轉化為函數最值問題;(2)將所證不等式轉化為,進一步轉化為,然后再通過構造加以證明即可.【詳解】(1),根據題意,在內存在單調減區(qū)間,則不等式在上有解,由得,設,則,當且僅當時,等號成立,所以當時,,所以存在,使得成立,所以的取值范圍為。(2)當時,,則,從而所證不等式轉化為,不妨設,則不等式轉化為,即,即,令,則不等式轉化為,因為,則,從而不等式化為,設,則,所以在上單調遞增,所以即不等式成立,故原不等式成立.本題考查了利用導數研究函數單調性、利用導數證明不等式,這里要強調一點,在證明不等式時,通常是構造函數,將問題轉化為函數的極值或最值來處理,本題是一道有高度的壓軸解答題.20.(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見解析【解析】

(1)根據函數解析式,先求得導函數,由是函數的極值點可求得參數.求得函數定義域,并根據導函數的符號即可判斷單調區(qū)間.(2)當時,.代入函數解析式放縮為,代入證明的不等式可化為,構造函數,并求得,由函數單調性及零點存在定理可知存在唯一的,使得成立,因而求得函數的最小值,由對數式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數可求得,則解得所以,定義域為,在單調遞增,而,∴當時,,單調遞減,當時,,單調遞增,此時是函數的極小值點,的遞減區(qū)間為,遞增區(qū)間為(2)證明:當時,,因此要證當時,,只需證明,即令,則,在是單調遞增,而,∴存在唯一的,使得,當,單調遞減,當,單調遞增,因此當時,函數取得最小值,,,故,從而,即,結論成立.本題考查了由函數極值求參數,并根據導數判斷函數的單調區(qū)間,利用導數證明不等式恒成立,構造函數法的綜合應用,屬于難題.21.(I)an=2n-1,bn=【解析】

(I)直接利用等差數列,等比數列公式聯立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論