版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年江門市重點中學數學高三上期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列中,,且當為奇數時,;當為偶數時,.則此數列的前項的和為()A. B. C. D.2.已知,,,,則()A. B. C. D.3.二項式的展開式中只有第六項的二項式系數最大,則展開式中的常數項是()A.180 B.90 C.45 D.3604.將4名大學生分配到3個鄉(xiāng)鎮(zhèn)去當村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數是()A.18種 B.36種 C.54種 D.72種5.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術.得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術”:,,,,則按照以上規(guī)律,若具有“穿墻術”,則()A.48 B.63 C.99 D.1206.中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里7.把函數的圖象向右平移個單位長度,得到函數的圖象,若函數是偶函數,則實數的最小值是()A. B. C. D.8.在中,內角的平分線交邊于點,,,,則的面積是()A. B. C. D.9.設集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.11.已知集合,則()A. B. C. D.12.設,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.14.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總人數為__________.15.雙曲線的離心率為_________.16.已知函數為上的奇函數,滿足.則不等式的解集為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數,滿足?并說明理由.18.(12分)已知函數.(Ⅰ)當時,求不等式的解集;(Ⅱ)若不等式對任意實數恒成立,求實數的取值范圍.19.(12分)已知橢圓C:(a>b>0)過點(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點A,B,點M坐標為(2,1),設直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.20.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.21.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.22.(10分)已知;.(1)若為真命題,求實數的取值范圍;(2)若為真命題且為假命題,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據分組求和法,利用等差數列的前項和公式求出前項的奇數項的和,利用等比數列的前項和公式求出前項的偶數項的和,進而可求解.【詳解】當為奇數時,,則數列奇數項是以為首項,以為公差的等差數列,當為偶數時,,則數列中每個偶數項加是以為首項,以為公比的等比數列.所以.故選:A本題考查了數列分組求和、等差數列的前項和公式、等比數列的前項和公式,需熟記公式,屬于基礎題.2.D【解析】
令,求,利用導數判斷函數為單調遞增,從而可得,設,利用導數證出為單調遞減函數,從而證出,即可得到答案.【詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D本題考查了作差法比較大小,考查了構造函數法,利用導數判斷式子的大小,屬于中檔題.3.A【解析】試題分析:因為的展開式中只有第六項的二項式系數最大,所以,,令,則,.考點:1.二項式定理;2.組合數的計算.4.B【解析】
把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學生按人數分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.本題考查排列組合,屬于基礎題.5.C【解析】
觀察規(guī)律得根號內分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現規(guī)律,根號內分母為分子的平方減1所以故選:C.本題考查了歸納推理,發(fā)現總結各式規(guī)律是關鍵,屬于基礎題.6.B【解析】
人每天走的路程構成公比為的等比數列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構成公比為的等比數列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.本題考查了等比數列的應用,意在考查學生的計算能力和應用能力.7.A【解析】
先求出的解析式,再求出的解析式,根據三角函數圖象的對稱性可求實數滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應的函數解析式為,故.令,,解得,.因為為偶函數,故直線為其圖象的對稱軸,令,,故,,因為,故,當時,.故選:A.本題考查三角函數的圖象變換以及三角函數的圖象性質,注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應的解析式為,另外,如果為正弦型函數圖象的對稱軸,則有,本題屬于中檔題.8.B【解析】
利用正弦定理求出,可得出,然后利用余弦定理求出,進而求出,然后利用三角形的面積公式可計算出的面積.【詳解】為的角平分線,則.,則,,在中,由正弦定理得,即,①在中,由正弦定理得,即,②①②得,解得,,由余弦定理得,,因此,的面積為.故選:B.本題考查三角形面積的計算,涉及正弦定理和余弦定理以及三角形面積公式的應用,考查計算能力,屬于中等題.9.C【解析】
作出韋恩圖,數形結合,即可得出結論.【詳解】如圖所示,,同時.故選:C.本題考查集合關系及充要條件,注意數形結合方法的應用,屬于基礎題.10.D【解析】
先根據向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.此題考查向量的坐標運算,引入新定義,屬于簡單題目.11.B【解析】
計算,再計算交集得到答案【詳解】,表示偶數,故.故選:.本題考查了集合的交集,意在考查學生的計算能力.12.C【解析】試題分析:,.故C正確.考點:復合函數求值.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先根據點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.本題主要考查三角形的面積問題,把所求面積進行轉化是求解的關鍵,側重考查數學運算的核心素養(yǎng).14.60【解析】
根據樣本容量及各組人數比,可求得C組中的人數;由組中甲、乙二人均被抽到的概率是可求得C組的總人數,即可由各組人數比求得總人數.【詳解】三組人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數分別.設組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.本題考查了分層抽樣的定義與簡單應用,古典概型概率的簡單應用,由各層人數求總人數的應用,屬于基礎題.15.2【解析】16.【解析】
構造函數,利用導數判斷出函數的單調性,再將所求不等式變形為,利用函數的單調性即可得解.【詳解】設,則,設,則.當時,,此時函數單調遞減;當時,,此時函數單調遞增.所以,函數在處取得極小值,也是最小值,即,,,,即,所以,函數在上為增函數,函數為上的奇函數,則,,則不等式等價于,又,解得.因此,不等式的解集為.故答案為:.本題主要考查不等式的求解,構造函數,求函數的導數,利用導數和函數單調性之間的關系是解決本題的關鍵.綜合性較強.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(0,2);(2)存在,理由見解析【解析】
(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯立直線與拋物線,橢圓,再由根與系數的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數滿足題意.本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.18.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)分三種情況討論,分別求解不等式組,然后求并集即可得不等式的解集;(Ⅱ)根據絕對值不等式的性質可得,不等式對任意實數恒成立,等價于,解不等式即可求的取值范圍.試題解析:(Ⅰ)當時,即,①當時,得,所以;②當時,得,即,所以;③當時,得成立,所以.故不等式的解集為.(Ⅱ)因為,由題意得,則,解得,故的取值范圍是.19.(1)(2)k1+k2為定值0,見解析【解析】
(1)利用已知條件直接求解,得到橢圓的方程;(2)設直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯立,設,利用韋達定理求出,然后化簡求解即可.【詳解】(1)由橢圓過點(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設直線在軸上的截距為,所以直線的方程為:,由得:,由得,設,則,所以,又,所以,故.本題主要考查了橢圓的標準方程的求解,直線與橢圓的位置關系的綜合應用,考查了方程的思想,轉化與化歸的思想,考查了學生的運算求解能力.20.(1);(2).【解析】
(1)根據焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數量積公式并化簡,由換元法令,代入可得,再令及,結合函數單調性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設直線的方程為,點滿足,則為中點,點在圓上,設,聯立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內單調遞增,所以,即所以本題考查了橢圓的標準方程求法,直線與橢圓的位置關系綜合應用,由韋達定理研究參數間的關系,平面向量的線性運算與數量積運算,弦長公式的應用及換元法在求取值范圍問題中的綜合應用,計算量大,屬于難題.21.(1);(2)見解析.【解析】
(1)在中,計算出的值,可得出的值,進而可得出的值,由此可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓方程聯立,列出韋達定理,根據已知條件得出,利用韋達定理和斜率公式化簡得出與所滿足的關系式,代入直線的方程,即可得出直線所過定點的坐標.【詳解】(1)在中,,,,,,,,因此,橢圓的標準方程為;(2)由題不妨設,設點,聯立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點.本題考查橢圓方程的求解,同時也考查了橢圓中直線過
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年國家知識產權局專利局專利審查協作河南中心專利審查員招聘考試真題
- 黑龍江大學《綜合英語》2025 學年第二學期期末試卷
- 安卓課程設計簡單題目
- 2025年上海大學上海市科創(chuàng)教育研究院招聘行政專員備考題庫參考答案詳解
- 2025 九年級語文下冊議論文論據選擇標準課件
- 2025 九年級語文下冊新聞閱讀與寫作指導課件
- 2025年南昌農商銀行中層管理崗位人員招聘5人備考題庫及完整答案詳解一套
- 2025廣東江門恩平市公安局警務輔助人員招聘41人(第二批)備考核心試題附答案解析
- 2025廣州東站江門市江海區(qū)銀信資產管理有限公司招聘1人參考考試題庫及答案解析
- c語言課程設計年齡
- 西南名校聯盟2026屆高三12月“3+3+3”高考備考診斷性聯考(一)英語試卷(含答案詳解)
- 黃埔區(qū)2025年第二次招聘社區(qū)專職工作人員備考題庫有答案詳解
- 2025貴州錦麟化工有限責任公司第三次招聘7人備考筆試題庫及答案解析
- 2026年元旦校長致辭:騏驥馳騁啟新程智育賦能向未來
- 2025廣東廣州琶洲街道招聘雇員(協管員)5人筆試考試參考試題及答案解析
- 2025國家統計局齊齊哈爾調查隊招聘公益性崗位5人筆試考試備考試題及答案解析
- 雨課堂學堂在線學堂云《勞動教育(西安理大 )》單元測試考核答案
- 2025年特種作業(yè)人員危險化學品安全作業(yè)(化工自動化控制儀表)考試題庫及答案
- 2022危險性較大的分部分項工程專項施工方案編制與管理指南
- 大學與青年發(fā)展智慧樹知到期末考試答案章節(jié)答案2024年華僑大學
- DB13(J)∕T 8054-2019 市政基礎設施工程施工質量驗收通用標準
評論
0/150
提交評論