解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》重點解析試題(解析版)_第1頁
解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》重點解析試題(解析版)_第2頁
解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》重點解析試題(解析版)_第3頁
解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》重點解析試題(解析版)_第4頁
解析卷人教版8年級數(shù)學(xué)上冊《全等三角形》重點解析試題(解析版)_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》重點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在中,是邊上的高,平分,交于點,若,,則的面積等于()A.36 B.48 C.60 D.722、下列關(guān)于全等三角形的說法不正確的是A.全等三角形的大小相等 B.兩個等邊三角形一定是全等三角形C.全等三角形的形狀相同 D.全等三角形的對應(yīng)邊相等3、如圖,已知,下面甲、乙、丙、丁四個三角形中,與全等的是(

)A.甲 B.乙 C.丙 D.丁4、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.45、如圖是作的作圖痕跡,則此作圖的已知條件是(

)A.已知兩邊及夾角 B.已知三邊 C.已知兩角及夾邊 D.已知兩邊及一邊對角第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,AD,BE是的兩條高線,只需添加一個條件即可證明(不添加其它字母及輔助線),這個條件可以是______(寫出一個即可).2、如圖,小明與小紅玩蹺蹺板游戲,如果蹺蹺板的支點O(即蹺蹺板的中點)至地面的距離是50cm,當小紅從水平位置CD下降30cm時,這時小明離地面的高度是___cm.3、如圖,已知,請你添加一個條件,使得,你添加的條件是_____.(不添加任何字母和輔助線)4、如圖,已知的周長是22,PB、PC分別平分和,于D,且,的面積是________.5、如圖,圖形的各個頂點都在33正方形網(wǎng)格的格點上.則______.三、解答題(5小題,每小題10分,共計50分)1、已知如圖,E.F在BD上,且AB=CD,BF=DE,AE=CF,求證:AC與BD互相平分.2、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.3、如圖,已知,.求證:.4、如圖,已知,,,求證:.5、如圖,在中,,點在邊上,使,過點作,分別交于點,交的延長線于點.求證:.-參考答案-一、單選題1、B【解析】【分析】作交于點,然后根據(jù)角平分線的性質(zhì),可以得到,再根據(jù)三角形的面積公式,即可求得的面積.【詳解】解:作交于點,∵是邊上的高,∴,∵平分,∴∵,,∴.故選:B.【考點】本題考查了三角形的面積和角平分線性質(zhì).理解和掌握角的平分線的性質(zhì)定理是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)全等三角形的定義與性質(zhì)即可求解.【詳解】A、全等三角形的大小相等,說法正確,故A選項錯誤;B、兩個等邊三角形,三個角對應(yīng)相等,但邊長不一定相等,所以不一定是全等三角形,故B選項正確;C、全等三角形的形狀相同,說法正確,故C選項錯誤;D、全等三角形的對應(yīng)邊相等,說法正確,故D選項錯誤.故選B.【考點】本題考查了全等三角形的定義與性質(zhì),能夠完全重合的兩個三角形叫做全等三角形,即形狀相同、大小相等兩個三角形叫做全等三角形;全等三角形的對應(yīng)邊相等,對應(yīng)角相等.3、B【解析】【分析】根據(jù)全等三角形的判定定理逐判定即可.【詳解】解:A.△ABC和甲所示三角形只有一邊一角對應(yīng)相等,無法判定它們?nèi)?,故本選項不符合題意;B.△ABC和乙所示三角形有兩邊及其夾角對應(yīng)相等,根據(jù)SAS可判定它們?nèi)?,故本選項符合題意;C.△ABC和丙所示三角形有兩邊一角相等,但不是對應(yīng)的兩邊一角,無法判定它們?nèi)龋时具x項不符合題意;;D.△ABC和丁所示三角形有兩角對應(yīng)相等,有一邊相等,但相等邊不是兩角的夾邊,所以兩角一邊不是對應(yīng)相等,無法判定它們?nèi)?,故本選項不符合題意;;故選:B.4、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應(yīng)的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應(yīng)的實數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點,是解題的關(guān)鍵.5、C【解析】【分析】觀察的作圖痕跡,可得此作圖的條件.【詳解】解:觀察的作圖痕跡,可得此作圖的已知條件為:∠α,∠β,及線段AB,故已知條件為:兩角及夾邊,故選C.【考點】本題主要考查三角形作圖及三角形全等的相關(guān)知識.二、填空題1、(答案不唯一)【解析】【分析】根據(jù)已知條件可知,故只要添加一條邊相等即可證明.【詳解】解:添加,AD,BE是的兩條高線,,在與中,.故答案為:(答案不唯一).【考點】本題考查了三角形全等的判定,掌握三角形全等的判定是解題的關(guān)鍵.2、80【解析】【分析】根據(jù)題意可得:OF=OG,OC=OD,利用已知條件判斷出△OFC≌△OGD,得到CF=DG,即可求出答案.【詳解】∵O是FG和CD的中點∴OF=OG,OC=OD在△OFC和△OGD中∴△OFC≌△OGD(SAS)∴CF=DG又DG=30cm∴CF=DG=30cm∴小明離地面的高度=支點到地面的高度+CF=50+30=80cm故答案為80【考點】本題主要考查了三角形全等知識的應(yīng)用,用數(shù)學(xué)方法解決生活中有關(guān)的實際問題,把實際問題轉(zhuǎn)換成數(shù)學(xué)問題,用數(shù)學(xué)方法加以論證,最后進行求解,是一種十分重要的方法.3、或或.【解析】【分析】根據(jù)圖形可知證明已經(jīng)具備了一個公共角和一對相等邊,因此可以利用ASA、SAS、AAS證明兩三角形全等.【詳解】∵,,∴可以添加,此時滿足SAS;添加條件,此時滿足ASA;添加條件,此時滿足AAS,故答案為或或;【考點】本題考查了全等三角形的判定,是一道開放題,解題的關(guān)鍵是牢記全等三角形的判定方法.4、33【解析】【分析】連接AP,過點P分別作PE⊥AB于點E,PF⊥AC于點F,根據(jù)角平分線的性質(zhì)定理,可得PD=PE=PF=3,再根據(jù)三角形的面積等于三個小三角形的面積之和,即可求解.【詳解】解:如圖,連接AP,過點P分別作PE⊥AB于點E,PF⊥AC于點F,∵PB、PC分別平分和,于D,∴PD=PE,PD=PF,∴PD=PE=PF=3,∵的周長是22,∴的面積是.故答案為:33【考點】本題主要考查了角平分線的性質(zhì)定理,熟練掌握角平分線上的點到角兩邊的距離相等是解題的關(guān)鍵.5、45°或45度【解析】【分析】通過證明三角形全等得出∠1=∠3,再根據(jù)∠1+∠2=∠3+∠2即可得出答案.【詳解】解:如圖所示,由題意得,在Rt△ABC和Rt△EFC中,∵∴Rt△ABC≌Rt△EFC(SAS)∴∠3=∠1∵∠2+∠3=90°∴∠1+∠2=∠3+∠2=90°故答案為:45°【考點】本題主要考查了全等三角形的判定和性質(zhì),由證明三角形全等得出∠1=∠3是解題的關(guān)鍵.三、解答題1、見解析【解析】【分析】根據(jù)已知條件易證△ABE≌△DFC,由全等三角形的對應(yīng)角相等可得∠B=∠D,再利用AAS證明△ABO≌△COD,所以AO=CO,BO=DO,即可證明AC與BD互相平分.【詳解】證明:∵BF=DE,∴BF-EF=DE-EF即BE=DF,在△ABE和△DFC中,∴△ABE≌△DFC(SSS),∴∠B=∠D.在△ABO和△CDO中,∴△ABO≌△CDO(AAS),∴AO=CO,BO=DO,即AC與BD互相平分.【考點】本題考查了全等三角形的判定與性質(zhì),解題關(guān)鍵是通過證明△ABE≌△DFC得∠B=∠D,為證明△ABO≌△COD提供條件.2、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據(jù)BD平分∠ABC,可得∠ABD=∠EBD,根據(jù),可判定△ABD≌△EBD,根據(jù)全等三角形的性質(zhì)可得:AD=ED,∠A=∠BED.再根據(jù)AD=CD,等量代換可得ED=CD,根據(jù)等邊對等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【詳解】證明:在線段BC上截取BE=BA,連接DE,如圖所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考點】本題主要考查全等三角形的判定和性質(zhì),解決本題的關(guān)鍵是要熟練掌握全等三角形的判定和性質(zhì).3、見詳解.【解析】【分析】根據(jù)SSS定理推出△ADB≌△BCA即可證明.【詳解】證明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴.【考點】本題考查了全等三角形的性質(zhì)和判定,能正確進行推理證明全等是解此題的關(guān)鍵.4、證明見解析.【解析】【分析】利用SSS可證明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根據(jù)三角形外角的性質(zhì)即可得∠3=∠BAD+∠ABD,即可得結(jié)論.【詳解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論