解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形綜合練習試題(解析卷)_第1頁
解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形綜合練習試題(解析卷)_第2頁
解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形綜合練習試題(解析卷)_第3頁
解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形綜合練習試題(解析卷)_第4頁
解析卷-四川峨眉第二中學7年級數(shù)學下冊第四章三角形綜合練習試題(解析卷)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川峨眉第二中學7年級數(shù)學下冊第四章三角形綜合練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、如圖,為了估算河的寬度,我們可以在河的對岸選定一個目標點,再在河的這一邊選定點和,使,并在垂線上取兩點、,使,再作出的垂線,使點、、在同一條直線上,因此證得,進而可得,即測得的長就是的長,則的理論依據(jù)是()A. B. C. D.2、如圖,E是正方形ABCD的邊DC上一點,過點A作FA=AE交CB的延長線于點F,若AB=4,則四邊形AFCE的面積是()A.4 B.8 C.16 D.無法計算3、如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論:①AE=BF;②AE⊥BF;③QF=QB;④S四邊形ECFG=S△ABG.正確的個數(shù)是()A.1 B.2 C.3 D.44、下列各組圖形中,是全等形的是()A.兩個含30°角的直角三角形B.一個鈍角相等的兩個等腰三角形C.邊長為5和6的兩個等腰三角形D.腰對應相等的兩個等腰直角三角形5、下列長度的三條線段,能組成三角形的是()A.3,4,8 B.5,6,11 C.1,3,5 D.5,6,106、下列長度的三條線段能組成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,77、如圖,點C在∠AOB的OB邊上,用尺規(guī)作出了∠NCE=∠AOD,作圖痕跡中,弧FG是()A.以點C為圓心,OD為半徑的弧B.以點C為圓心,DM為半徑的弧C.以點E為圓心,OD為半徑的弧D.以點E為圓心,DM為半徑的弧8、已知線段AB=9cm,AC=5cm,下面有四個說法:①線段BC長可能為4cm;②線段BC長可能為14cm;③線段BC長不可能為3cm;④線段BC長可能為9cm.所有正確說法的序號是()A.①② B.③④ C.①②④ D.①②③④9、如圖,已知△ABC,下面甲、乙、丙、丁四個三角形中,與△ABC全等的是()A. B.C. D.10、以下列長度的三條線段為邊,能組成三角形的是()A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、已知a,b,c是的三邊長,滿足,c為奇數(shù),則______.2、如圖,∠C=∠D=90°,AC=AD,請寫出一個正確的結論________.3、如圖,已知,,,則______°.4、如圖,∠1=∠2,加上條件_____,可以得到△ADB≌△ADC(SAS).5、如圖,在△ABC中,D是AC延長線上一點,∠A=50°,∠B=70°,則∠BCD=__________°.6、如圖,△ABC是一個等腰直角三角形,∠BAC=90°,BC分別與AF、AG相交于點D、E.不添加輔助線,使△ACE與△ABD全等,你所添加的條件是____.(填一個即可)7、如圖,線段AC與BD相交于點O,∠A=∠D=90°,要證明△ABC≌△DCB,還需添加的一個條件是____________.(只需填一個條件即可)8、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.9、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.10、如圖,已知AB=12m,CA⊥AB于點A,DB⊥AB于點B,且AC=4m,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m.若P,Q兩點同時出發(fā),運動_____分鐘后,△CAP與△PQB全等.三、解答題(6小題,每小題10分,共計60分)1、如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.(1)求證:BE=CD;(2)F為AD上一點,DF=CD,連接BF,若AD=5,BE=2,求△BDG的面積2、如圖,已知△ABC,按如下步驟作圖:①以點A為圓心,AB長為半徑畫?。谝渣cC為圓心,CB長為半徑畫弧,兩弧相交于點D.③連結BD,與AC交于點E,連結AD,CD.求證:∠BAC=∠DAC.3、已知:如圖,AC、BD相交于點O,,.求證:4、在中,,,點D是直線AC上一動點,連接BD并延長至點E,使.過點E作于點F.(1)如圖1,當點D在線段AC上(點D不與點A和點C重合)時,此時DF與DC的數(shù)量關系是______.(2)如圖2,當點D在線段AC的延長線上時,依題意補全圖形,并證明:.(3)當點D在線段CA的延長線上時,直接用等式表示線段AD,AF,EF之間的數(shù)量關系是______.5、如圖,直角坐標系中,點B(a,0),點C(0,b),點A在第一象限.若a,b滿足(a?t)2+|b?t|=0(t>0).(1)證明:OB=OC;(2)如圖1,連接AB,過A作AD⊥AB交y軸于D,在射線AD上截取AE=AB,連接CE,F(xiàn)是CE的中點,連接AF,OA,當點A在第一象限內運動(AD不過點C)時,證明:∠OAF的大小不變;(3)如圖2,B′與B關于y軸對稱,M在線段BC上,N在CB′的延長線上,且BM=NB′,連接MN交x軸于點T,過T作TQ⊥MN交y軸于點Q,當t=2時,求點Q的坐標.6、如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.(1)求∠ADB的度數(shù);(2)線段DE,AD,DC之間有什么數(shù)量關系?請說明理由.(提示:在線段DE上截取線段EM=BD,連接線段AM或者在線段DE上截取線段DM=AD連接線段AM).-參考答案-一、單選題1、C【分析】根據(jù)題意及全等三角形的判定定理可直接進行求解.【詳解】解:∵,,∴,在和中,,∴(ASA),∴;故選C.【點睛】本題主要考查全等三角形的性質與判定,熟練掌握全等三角形的性質與判定是解題的關鍵.2、C【分析】先證明可得從而可得答案.【詳解】解:正方形ABCD,AB=4,故選C【點睛】本題考查的是小學涉及的正方形的性質,直角三角形全等的判定與性質,證明是解本題的關鍵.3、D【分析】首先證明△ABE≌△BCF,再利用角的關系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF對折,得到△BPF,利用角的關系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正確.【詳解】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正確;∵Rt△ABE≌Rt△BCF,∴S△ABE=S△BCF,∴S△ABE﹣S△BEG=S△BCF﹣S△BEG,即S四邊形ECFG=S△ABG,故④正確.故選:D.【點睛】本題主要是考查了三角形全等、正方形的性質,熟練地綜合應用全等三角形以及正方形的性質,證明邊相等和角相等,是解決本題的關鍵.4、D【分析】根據(jù)兩個三角形全等的條件依據(jù)三角形全等判定方法SSS,SAS,AAS,SAS,HL逐個判斷得結論.【詳解】解:A、兩個含30°角的直角三角形,缺少對應邊相等,故選項A不全等;B、一個鈍角相等的兩個等腰三角形.缺少對應邊相等,故選項B不全等;C、腰為5底為6的三角形和腰為6底為5的三角形不全等,故選項C不全等;D、腰對應相等,頂角是直角的兩個三角形滿足“邊角邊”,故選項D是全等形.故選:D.【點睛】本題主要考查了三角形全等的判定方法;需注意:判定兩個三角形全等時,必須有邊的參與,還要找準對應關系.5、D【分析】根據(jù)圍成三角形的條件逐個分析求解即可.【詳解】解:A、∵,∴3,4,8不能圍成三角形,不符合題意;B、∵,∴5,6,11不能圍成三角形,不符合題意;C、∵,∴1,3,5不能圍成三角形,不符合題意;D、∵,∴5,6,10能圍成三角形,符合題意,故選:D.【點睛】此題考查了圍成三角形的條件,解題的關鍵是熟練掌握圍成三角形的條件.圍成三角形的條件:兩邊之和大于第三邊,兩邊只差小于第三邊.6、C【分析】根據(jù)組成三角形的三邊關系依次判斷即可.【詳解】A、3,4,7中3+4=7,故不能組成三角形,與題意不符,選項錯誤.B、3,4,8中3+4<8,故不能組成三角形,與題意不符,選項錯誤.C、3,4,5中任意兩邊之和都大于第三邊,任意兩邊之差都小于第三邊,故能組成三角形,符合題意,選項正確.D、3,3,7中3+3<7,故不能組成三角形,與題意不符,選項錯誤.故選:C.【點睛】本題考查了三角形的三邊關系,在一個三角形中,任意兩邊之和大于第三邊,任意兩邊之差小于第三邊.7、D【分析】根據(jù)作一個角等于已知角的步驟即可得.【詳解】解:作圖痕跡中,弧FG是以點E為圓心,DM為半徑的弧,故選:D.【點睛】本題主要考查作圖-尺規(guī)作圖,解題的關鍵是熟練掌握作一個角等于已知角的尺規(guī)作圖步驟.8、D【分析】分三種情況:C在線段AB上,C在線段BA的延長線上以及C不在直線AB上結合線段的和差以及三角形三邊的關系分別求解即可.【詳解】解:∵線段AB=9cm,AC=5cm,∴如圖1,A,B,C在一條直線上,∴BC=AB?AC=9?5=4(cm),故①正確;如圖2,當A,B,C在一條直線上,∴BC=AB+AC=9+5=14(cm),故②正確;如圖3,當A,B,C不在一條直線上,9?5=4cm<BC<9+5=14cm,故線段BC可能為9cm,不可能為3cm,故③,④正確.故選D.【點睛】此題主要考查了三角形三邊關系,線段之間的關系,正確分類討論是解題關鍵.9、B【分析】根據(jù)三角形全等的判定定理(定理和定理)即可得.【詳解】解:A、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;B、此項滿足定理,與全等,符合題意;C、中,長為的兩邊的夾角等于,則此項不滿足定理,與不全等,不符題意;D、中,角度為的夾邊長為,則此項不滿足定理,與不全等,不符題意;故選:B.【點睛】本題考查了三角形全等的判定定理,熟練掌握三角形全等的判定方法是解題關鍵.10、D【分析】根據(jù)三角形的三邊關系,即可求解.【詳解】解:A、因為,所以不能構成三角形,故本選項不符合題意;B、因為,所以不能構成三角形,故本選項不符合題意;C、因為,所以不能構成三角形,故本選項不符合題意;D、因為,所以能構成三角形,故本選項符合題意;故選:D【點睛】本題主要考查了三角形的三邊關系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關鍵.二、填空題1、7【分析】絕對值與平方的取值均0,可知,,可得a、b的值,根據(jù)三角形三邊關系求出c的取值范圍,進而得到c的值.【詳解】解:,由三角形三邊關系可得為奇數(shù)故答案為:7.【點睛】本題考查了絕對值、平方的非負性,三角形的三邊關系等知識點.解題的關鍵是確定所求邊長的取值范圍.2、BC=BD【分析】根據(jù)HL證明△ACB和△ADB全等解答即可.【詳解】解:在Rt△ACB和Rt△ADB中,,∴△ACB≌△ADB(HL),∴BC=BD,故答案為:BC=BD(答案不唯一).【點睛】此題考查全等三角形的判定和性質,關鍵是根據(jù)HL證明△ACB和△ADB全等解答.3、59【分析】如圖,過作證明證明再利用三角形的外角的性質求解從而可得答案.【詳解】解:如圖,過作,而,,故答案為:【點睛】本題考查的是平行線的性質,平行公理的應用,三角形的外角的性質,過作再證明是解本題的關鍵.4、AB=AC(答案不唯一)【分析】根據(jù)全等三角形的判定定理SAS證得△ADB≌△ADC.【詳解】解:加上條件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB與△ADC中,,∴△ADB≌△ADC(SAS),故答案為:AB=AC(答案不唯一).【點睛】本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.5、120【分析】根據(jù)三角形的外角性質,可得,即可求解.【詳解】解:∵是的外角,∴,∵∠A=50°,∠B=70°,∴.故答案為:120【點睛】本題主要考查了三角形的外角性質,熟練掌握三角形的一個外角等于與它不相鄰的兩個內角的和是解題的關鍵.6、CD=BE(答案不唯一)【分析】△ABC是一個等腰直角三角形,可知,,使△ACE與△ABD全等,只需填加一組對應角相等或的另一組邊相等即可.【詳解】解:①若所添加的條件是CD=BE,∵CD=BE,∴,∵△ABC是一個等腰直角三角形,∴,,在△ACE和△ABD中,,∴(SAS)故答案為:CD=BE,(答案不唯一)【點睛】本題主要考查了全等三角形的判定,掌握全等三角形判定方法并靈活運用是解題關鍵.7、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB【分析】根據(jù)全等三角形的判定條件求解即可.【詳解】解:∵∠A=∠D=90°,BC=CB,∴只需要添加:AC=DB或AB=DC,即可利用HL證明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS證明△ABC≌△DCB,故答案為:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.【點睛】本題主要考查了全等三角形的判定,熟知全等三角形的判定條件是解題的關鍵.8、【分析】連接CP.設△CPE的面積是x,△CDP的面積是y.根據(jù)BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據(jù)△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據(jù)△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據(jù)三角形的面積公式求得三角形的面積之間的關系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.9、2或6或2【分析】設BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質,利用分類討論思想是解答此題的關鍵.10、4【分析】根據(jù)題意CA⊥AB,DB⊥AB,則,則分或兩種情況討論,根據(jù)路程等于速度乘以時間求得的長,根據(jù)全等列出一元一次方程解方程求解即可【詳解】解:CA⊥AB,DB⊥AB,點P從點B向點A運動,每分鐘走1m,點Q從點B向點D運動,每分鐘走2m,設運動時間為,且AC=4m,,當時則,即,解得當時,則,即,解得且不符合題意,故舍去綜上所述即分鐘后,△CAP與△PQB全等.故答案為:【點睛】本題考查了三角形全等的性質,根據(jù)全等的性質列出方程是解題的關鍵.三、解答題1、(1)見解析;(2)【分析】(1)根據(jù)垂直定義求出∠BEC=∠ACB=∠ADC,根據(jù)等式性質求出∠ACD=∠CBE,根據(jù)AAS證明△BCE≌△CAD,則可得出結論;(2)證明△FDG≌△BEG(AAS),由全等三角形的性質得出EG=DG,求出DG的長,則可得出答案.【詳解】解:(1)證明:∵∠ACB=90°,BE⊥CE,AD⊥CE∴∠ECB+∠ACD=90°,∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE;(2)證明:∵△ACD≌△CBE,∴AD=CE,CD=BE,∵DF=CD∴FD=BE∵AD⊥CE,BE⊥CE,∴BE∥AD,∴∠BEG=∠FDG,在△FDG和△BEG中,,∴△FDG≌△BEG(AAS),∴EG=DG,∵AD=5,BE=2,∴DG=DE=(CE-CD)=×(5-2)=,∴S△BDG=DG?BE=××2=.【點睛】本題考查了全等三角形的性質和判定,垂線的定義等知識點的應用,解此題的關鍵是證明△ADC和△CEB全等.2、見解析【分析】由作圖知:,結合公共邊從而可得結論.【詳解】證明:由作圖知:在與中,..【點睛】本題考查的是作一條線段等于已知線段,全等三角形的判定與性質,掌握“利用證明兩個三角形全等”是解本題的關鍵.3、見解析.【分析】利用“”證明,再利用全等三角形的性質證明即可.【詳解】證明:在與中,,;.【點睛】本題考查了全等三角形的判定與性質,解題的關鍵是熟練掌握三角形全等的判定方法.4、(1)(2)見解析(3)【分析】(1)利用邊相等和角相等,直接證明,即可得到結論.(2)利用邊相等和角相等,直接證明,得到和,最后通過邊與邊之間的關系,即可證明結論成立.(3)要證明,先利用邊相等和角相等,直接證明,得到和,最后通過邊與邊之間的關系,即可證明結論成立.【詳解】(1)解:,,,在和中,,.(2)解:當點D在線段AC的延長線上時,如下圖所示:,,,在和中,,,,.(3)解:,如下圖所示:,,,在和中,,,,.【點睛】本題主要是考查了三角形全等的判定和性質,熟練利用條件證明三角形全等,然后利用邊相等以及邊與邊之間關系,即可證明結論成立,這是解決該題的關鍵.5、(1)見解析(2)見解析(3)點坐標為(,).【分析】(1)利用絕對值以及平方的非負性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論