基礎強化人教版8年級數學上冊《全等三角形》專題訓練試卷(含答案詳解)_第1頁
基礎強化人教版8年級數學上冊《全等三角形》專題訓練試卷(含答案詳解)_第2頁
基礎強化人教版8年級數學上冊《全等三角形》專題訓練試卷(含答案詳解)_第3頁
基礎強化人教版8年級數學上冊《全等三角形》專題訓練試卷(含答案詳解)_第4頁
基礎強化人教版8年級數學上冊《全等三角形》專題訓練試卷(含答案詳解)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《全等三角形》專題訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知,,,則的長為(

)A.7 B.3.5 C.3 D.22、如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點P,過P作PF⊥AD交BC的延長線于點F,交AC于點H,則下列結論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是()A.①②③ B.①②④ C.①③④ D.①②③④3、在正方形網格中,∠AOB的位置如圖所示,到∠AOB兩邊距離相等的點應是(

)A.點M B.點N C.點P D.點Q4、已知,則為(

)A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上都有可能5、下列說法正確的是(

)①近似數精確到十分位;②在,,,中,最小的是;③如圖所示,在數軸上點所表示的數為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角”;⑤如圖,在內一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.4第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,則∠DEF=______度.2、如圖,的三邊,,的長分別是10,15,20,其三條角平分線相交于點O,連接OA,OB,OC,將分成三個三角形,則等于__________.3、如圖,,若,則到的距離為_________.4、如圖,在△ABC中,點D是AC的中點,分別以AB,BC為直角邊向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=NBC=∠90°,連接MN,已知MN=4,則BD=_________.5、如圖,在四邊形中,,,,點在線段上以的速度由點向點運動,同時,點在線段上由點向點運動,設運動時間為,當與以,,為頂點的三角形全等時,點的運動速度為______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在四邊形中,,,分別是,上的點,連接,,.(1)如圖①,,,.求證:;

(2)如圖②,,當周長最小時,求的度數;(3)如圖③,若四邊形為正方形,點、分別在邊、上,且,若,,請求出線段的長度.2、方格紙上有2個圖形,你能沿著格線把每一個圖形都分成完全相同的兩個部分嗎?請畫出分割線.3、已知:如圖,AB=DE,AB∥DE,BE=CF,且點B、E、C、F都在一條直線上,求證:AC∥DF.4、已知:如圖,點A,D,C,B在同一條直線上,AD=BC,AE=BF,CE=DF,求證:(1)△AEC≌△BFD(2)DE=CF5、如圖,△ABC中,∠B=2∠C,AE平分∠BAC.(1)若AD⊥BC于D,∠C=35°,求∠DAE的大??;(2)若EF⊥AE交AC于F,求證:∠C=2∠FEC.-參考答案-一、單選題1、C【解析】【分析】利用全等三角形的性質求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點】本題主要考查了全等三角形的性質,熟知全等三角形對應邊相等是解題的關鍵.2、D【解析】【分析】根據三角形內角和定理以及角平分線定義判斷①;根據全等三角形的判定和性質判斷②③;根據角平分線的判定與性質判斷④.【詳解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分別平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正確.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正確.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正確.連接CP,如下圖所示:∵△ABC的角平分線AD、BE相交于點P,∴點P到AB、AC的距離相等,點P到AB、BC的距離相等,∴點P到BC、AC的距離相等,∴點P在∠ACB的平分線上,∴CP平分∠ACB,故④正確,綜上所述,①②③④均正確,故選:D.【考點】本題考查了角平分線的判定與性質,三角形全等的判定方法,三角形內角和定理.掌握相關性質是解題的關鍵.3、A【解析】【分析】利用到角的兩邊的距離相等的點在角的平分線上進行判斷.【詳解】點P、Q、M、N中在∠AOB的平分線上的是M點.故選:A.【考點】本題主要考查了角平分線的性質,根據正方形網格看出∠AOB平分線上的點是解答問題的關鍵.4、C【解析】【分析】根據∠A和∠B的度數可得與互余,從而得出為直角三角形.【詳解】解:,即與互余,則為直角三角形,故選C.【考點】此題考查的是直角三角形的判定,掌握有兩個內角互余的三角形是直角三角形是解決此題的關鍵.5、B【解析】【分析】根據近似數的精確度定義,可判斷①;根據實數的大小比較,可判斷②;根據點在數軸上所對應的實數,即可判斷③;根據反證法的概念,可判斷④;根據角平分線的性質,可判斷⑤.【詳解】①近似數精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數軸上點所表示的數為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數的精確度定義,實數的大小比較,點在數軸上所對應的實數,反證法的概念,角平分線的性質,熟練掌握上述知識點,是解題的關鍵.二、填空題1、40【解析】【分析】設∠BAC為4x,則∠ACB為3x,∠ABC為2x,由∠BAC+∠ACB+∠ABC=180°得4x+3x+2x=180.【詳解】解:設∠BAC為4x,則∠ACB為3x,∠ABC為2x∵∠BAC+∠ACB+∠ABC=180°∴4x+3x+2x=180,解得x=20∴∠ABC=2x=40°∵△ABC≌△DEF∴∠DEF=∠ABC=40°.故答案為40【考點】考核知識點:全等三角形性質.理解全等三角形性質是關鍵.2、2:3:4【解析】【分析】過點O分別向三邊作垂線段,通過角平分線的性質得到三條垂線段長度相等,再通過面積比等于底邊長度之比得到答案.【詳解】解:過點O分別向BC、BA、AC作垂線段交于D、E、F三點.∵CO、BO、AO分別平分∴∵,,∴故答案為:2:3:4【考點】本題考查了角平分線的性質,往三角形的三邊作垂線段并得到面積之比等于底之比是解題關鍵.3、4【解析】【分析】過P點作PE⊥OB于E,根據角平分線的性質定理可得PE=PD,即可求解.【詳解】解:如圖,過P點作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距離是4,故答案為:4.【考點】本題考查了角平分線的性質,熟練掌握角平分線的性質定理是解題的關鍵.4、2【解析】【分析】延長BD到E,使DE=BD,連接AE,證明△ADE≌△CDB(SAS),可得AE=CB,∠EAD=∠BCD,再根據△ABM和△BCN是等腰直角三角形,證明△MBN≌△BAE,可得MN=BE,進而可得BD與MN的數量關系即可求解.【詳解】解:如圖,延長BD到E,使DE=BD,連接AE,∵點D是AC的中點,∴AD=CD,在△ADE和△CDB中,,∴△ADE≌△CDB(SAS),∴AE=CB,∠EAD=∠BCD,∵△ABM和△BCN是等腰直角三角形,∴AB=BM,CB=NB,∠ABM=∠CBN=90°,∴BN=AE,又∠MBN+∠ABC=360°-90°-90°=180°,∵∠BCA+∠BAC+∠ABC=180°,∴∠MBN=∠BCA+∠BAC=∠EAD+∠BAC=∠BAE,在△MBN和△BAE中,,∴△MBN≌△BAE(SAS),∴MN=BE,∵BE=2BD,∴MN=2BD.又MN=4,∴BD=2,故答案為:2.【考點】本題考查了全等三角形的判定與性質、等腰直角三角形,解決本題的關鍵是掌握全等三角形的判定與性質.5、1或【解析】【分析】設點的運動速度為,由題意可得,與以,,為頂點的三角形全等時分為兩種情況:,再利用全等三角形的性質求解即可.【詳解】解:設點的運動速度為,由題意可得,∵∴與以,,為頂點的三角形全等時可分為兩種情況:①當時,∴,∴∴∴此時點的運動速度為;②當時,,∴,∴,此時點的運動速度為,故答案為:1或.【考點】本題主要考查三角形全等的性質,掌握全等三角形的對應邊相等是解題的關鍵,注意分情況討論.三、解答題1、(1)見解析;(2);(3).【解析】【分析】(1)延長到點G,使,連接,首先證明,則有,,然后利用角度之間的關系得出,進而可證明,則,則結論可證;(2)分別作點A關于和的對稱點,,連接,交于點,交于點,根據軸對稱的性質有,,當點、、、在同一條直線上時,即為周長的最小值,然后利用求解即可;(3)旋轉至的位置,首先證明,則有,最后利用求解即可.【詳解】(1)證明:如解圖①,延長到點,使,連接,在和中,.,,,,.,在和中,.,;(2)解:如解圖,分別作點A關于和的對稱點,,連接,交于點,交于點.由對稱的性質可得,,此時的周長為.當點、、、在同一條直線上時,即為周長的最小值.,.,,;(3)解:如解圖,旋轉至的位置,,,.在和中,...【考點】本題主要考查全等三角形的判定及性質,軸對稱的性質,掌握全等三角形的判定及性質是解題的關鍵.2、見解析【解析】【分析】觀察第一個圖,圖中共有20個小方格,要分成完全相同兩部分,則每個有10個小格,則可按如圖所示,沿A→B→C→D分割;第二個圖同理沿E→F→G→H→P→Q分割即可.【詳解】解:如圖所示,第一個圖,圖中共有20個小方格,要分成完全相同兩部分,則每個有10個小格,則可按如圖所示,沿A→B→C→D分割;第二個圖同理沿E→F→G→H→P→Q分割即可.將分割出的兩個圖形,逆時針旋轉90度,再通過平移,兩部分能夠完全重合,所以分割出的兩部分完全相同.【考點】本題考查圖形全等,掌握全等圖形的定義是解題的關鍵.3、詳見解析【解析】【分析】首先利用平行線的性質∠B=∠DEF,再利用SAS得出△ABC≌△DEF,得出∠ACB=∠F,根據平行線的判定即可得到結論.【詳解】證明:∵AB∥DE,∴∠B=∠DEC,又∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠F,∴AC∥DF.【考點】本題考查了平行線的性質以及全等三角形的判定與性質,熟練掌握全等三角形的判定方法是解題關鍵.4、(1)見解析(2)見解析【解析】【分析】(1)由線段的和差可得AC=BD,繼而利用“SSS”即可求證結論;(2)由(1)可知∠A=∠B,繼而利用“SAS”求證△AED≌△BFC,根據全等三角形的性質即可求證結論.(1)證明:∵AD=BC,∴AD+DC=BC+DC,即AC=BD,在△AEC和△BFD中,

∴△AEC≌△BFD(SSS),(2)由(1)可知△AEC≌△BFD,∴∠A=∠B,在△AED和△BFC中,,∴△AED≌△BFC(SAS),∴DE=CF【考點】本題考查了全等三角形的判定及其性質,解題的關鍵是能夠根據已知條件和隱藏條件正確選擇全等三角形的判定方法.5、(1)17.5°;(2)證明過程見解析【解析】【分析】(1)首先計算出∠B,∠BAC的度數,根據AE是∠BAC的角平分線可得∠EAC=37.5°,再根據Rt△ADC中直角三角形兩銳角互余可得∠DAC的度數,進而可得答案;(2)過A作AD⊥BC于D,證明∠DAE=∠FEC,由三角形內角和定理得到∠EAC=90°-∠C,進而可得∠DAE=∠DAC-∠EAC,利用等量代換可得∠DAE=∠C即可求解.【詳解】解:(1)解:∵∠C=35°,∠B=2∠C,∴∠B=70°,∴在△ABC中,由內角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,∵AE平分∠BAC,∴∠EAC=37.5°,∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,兩銳角互余,∴∠DAC=90°-35°=55°,∴∠DAE=55°-37.5°=17.5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論