解析卷滬科版9年級下冊期末試題AB卷附答案詳解_第1頁
解析卷滬科版9年級下冊期末試題AB卷附答案詳解_第2頁
解析卷滬科版9年級下冊期末試題AB卷附答案詳解_第3頁
解析卷滬科版9年級下冊期末試題AB卷附答案詳解_第4頁
解析卷滬科版9年級下冊期末試題AB卷附答案詳解_第5頁
已閱讀5頁,還剩32頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、擲一枚質地均勻的骰子,向上一面的點數大于2且小于5的概率是()A. B. C. D.2、如圖,圓形螺帽的內接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm3、如圖,與相切于點,連接交于點,點為優(yōu)弧上一點,連接,,若,的半徑,則的長為()A.4 B. C. D.14、同時拋擲兩枚質地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.5、下列判斷正確的是()A.明天太陽從東方升起是隨機事件;B.購買一張彩票中獎是必然事件;C.擲一枚骰子,向上一面的點數是6是不可能事件;D.任意畫一個三角形,其內角和是360°是不可能事件;6、下列汽車標志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7、下列事件是隨機事件的是()A.拋出的籃球會下落B.經過有交通信號燈的路口,遇到紅燈C.任意畫一個三角形,其內角和是D.400人中有兩人的生日在同一天8、下列事件為必然事件的是()A.明天要下雨B.a是實數,|a|≥0C.﹣3<﹣4D.打開電視機,正在播放新聞第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1,如圖所示,將△ABC繞點A按逆時針方向旋轉90°后得到△AB′C′.則圖中陰影部分的面積為_____.2、兩直角邊分別為6、8,那么的內接圓的半徑為____________.3、如圖,在Rt△ABC,∠B=90°,AB=BC=1,將△ABC繞著點C逆時針旋轉60°,得到△MNC,那么BM=______________.4、《九章算術》是我國古代的數學名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.5、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.6、如圖,AB為的弦,半徑于點C.若,,則的半徑長為______.7、如圖,把分成相等的六段弧,依次連接各分點得到正六邊形ABCDEF,如果的周長為,那么該正六邊形的邊長是______.三、解答題(7小題,每小題0分,共計0分)1、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).2、在平面直角坐標系xOy中,的半徑為2.點P,Q為外兩點,給出如下定義:若上存在點M,N,使得P,Q,M,N為頂點的四邊形為矩形,則稱點P,Q是的“成對關聯點”.(1)如圖,點A,B,C,D橫、縱坐標都是整數.在點B,C,D中,與點A組成的“成對關聯點”的點是______;(2)點在第一象限,點F與點E關于x軸對稱.若點E,F是的“成對關聯點”,直接寫出t的取值范圍;(3)點G在y軸上.若直線上存在點H,使得點G,H是的“成對關聯點”,直接寫出點G的縱坐標的取值范圍.3、如圖1,在平面直角坐標系中,二次函數的圖象經過點,過點A作軸,做直線AC平行x軸,點D是二次函數的圖象與x軸的一個公共點(點D與點O不重合).(1)求點D的橫坐標(用含b的代數式表示)(2)求的最大值及取得最大值時的二次函數表達式.(3)在(2)的條件下,如圖2,P為OC的中點,在直線AC上取一點M,連接PM,做點C關于PM的對稱點N,①連接AN,求AN的最小值.②當點N落在拋物線的對稱軸上,求直線MN的函數表達式.4、如圖,拋物線y=-+x+2與x軸負半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標;(2)如圖1,點C在y軸右側的拋物線上,且AC=BC,求點C的坐標;(3)如圖2,將△ABO繞平面內點P順時針旋轉90°后,得到△DEF(點A,B,O的對應點分別是點D,E,F),D,E兩點剛好在拋物線上.①求點F的坐標;②直接寫出點P的坐標.5、如圖,AB是⊙O的直徑,點C是⊙O上一點,連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點F,AC與OD相交于點E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長.6、如圖1,圖2,圖3的網格均由邊長為1的小正方形組成,圖1是三國時期吳國的數學家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數學的一項重要成就,請根據下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學過的圖形變換,在圖2,3的方格紙中設計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點均在方格紙的格點上,且四個三角形互不重疊,不必涂陰影;②圖2中所設計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.7、為了引導青少年學黨史,某中學舉行了“獻禮建黨百年”黨史知識競賽活動,將成績劃分為四個等級:A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機調查了部分同學的競賽成績,繪制成了如下統(tǒng)計圖(部分信息未給出):(1)小李共抽取了名學生的成績進行統(tǒng)計分析,扇形統(tǒng)計圖中“優(yōu)秀”等級對應的扇形圓心角度數為,請補全條形統(tǒng)計圖;(2)該校共有2000名學生,請你估計該校競賽成績“優(yōu)秀”的學生人數;(3)已知調查對象中只有兩位女生競賽成績不合格,小李準備隨機回訪兩位競賽成績不合格的同學,請用樹狀圖或列表法求出恰好回訪到一男一女的概率.-參考答案-一、單選題1、C【分析】根據骰子各面上的數字得到向上一面的點數可能是3或4,利用概率公式計算即可.【詳解】解:一枚質地均勻的骰子共有六個面,點數分別為1,2,3,4,5,6,∴點數大于2且小于5的有3或4,∴向上一面的點數大于2且小于5的概率是=,故選:C.【點睛】此題考查了求簡單事件的概率,正確掌握概率的計算公式是解題的關鍵.2、D【分析】根據圓內接正六邊形的性質可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內接正六邊形的性質可得△AOB是正三角形,過作于設半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉化為直角三角形的問題是解決問題的關鍵.3、B【分析】連接OB,根據切線性質得∠ABO=90°,再根據圓周角定理求得∠AOB=60°,進而求得∠A=30°,然后根據含30°角的直角三角形的性質解答即可.【詳解】解:連接OB,∵AB與相切于點B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點睛】本題考查切線的性質、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質、勾股定理,熟練掌握相關知識的聯系與運用是解答的關鍵.4、A【分析】首先利用列舉法可得所有等可能的結果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質地均勻的硬幣,兩枚硬幣落地后的所有等可能的結果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點睛】本題考查了列舉法求概率的知識.此題比較簡單,注意在利用列舉法求解時,要做到不重不漏,注意概率=所求情況數與總情況數之比.5、D【詳解】解:A、明天太陽從東方升起是必然事件,故本選項錯誤,不符合題意;B、購買一張彩票中獎是隨機事件,故本選項錯誤,不符合題意;C、擲一枚骰子,向上一面的點數是6是隨機事件,故本選項錯誤,不符合題意;D、任意畫一個三角形,其內角和是360°是不可能事件,故本選項正確,符合題意;故選:D【點睛】本題考查的是對必然事件的概念的理解,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關鍵.6、C【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:C.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、B【分析】根據事件的確定性和不確定性,以及隨機事件的含義和特征,逐項判斷即可.【詳解】A.拋出的籃球會下落是必然事件,故此選項不符合題意;B.經過有交通信號燈的路口,遇到紅燈是隨機事件,故此選項符合題意;C.任意畫一個三角形,其內角和是是不可能事件,故此選項不符合題意;D.400人中有兩人的生日在同一天是必然事件,故此選項不符合題意;故選B【點睛】此題主要考查了事件的確定性和不確定性,要熟練掌握,解答此題的關鍵是要明確:事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.8、B【分析】根據事情發(fā)生的可能性大小進行判斷,必然事件和不可能事件統(tǒng)稱確定性事件;必然事件:在一定條件下,一定會發(fā)生的事件稱為必然事件;不可能事件:在一定條件下,一定不會發(fā)生的事件稱為不可能事件;隨機事件:在一定條件下,可能發(fā)生也可能不發(fā)生的事件稱為隨機事件.【詳解】A.明天要下雨,是隨機事件,不符合題意;B.a是實數,|a|≥0,是必然事件,符合題意;C.﹣3<﹣4,是不可能事件,不符合題意D.打開電視機,正在播放新聞,是隨機事件,不符合題意故選B【點睛】本題考查了必然事件,隨機事件,不可能事件,實數的性質,有理數大小比較,掌握相關知識是解題的關鍵.二、填空題1、【分析】利用勾股定理求出AC及AB的長,根據陰影面積等于求出答案.【詳解】解:由旋轉得,,=∠BAC=30°,∵∠ABC=90°,∠BAC=30°,BC=1,∴AC=2BC=2,AB=,,∴陰影部分的面積==,故答案為:..【點睛】此題考查了求不規(guī)則圖形的面積,正確掌握勾股定理、30度角直角三角形的性質、扇形面積計算公式及分析出陰影面積的構成特點是解題的關鍵.2、5【分析】直角三角形外接圓的直徑是斜邊的長.【詳解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是10,∴這個三角形的外接圓半徑長為5,故答案為:5.【點睛】本題考查了三角形的外接圓與外心,知道直角三角形外接圓的直徑是斜邊的長是關鍵;外心是三邊垂直平分線的交點,外心到三個頂點的距離相等.3、【分析】設BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,先證明△EMC≌△FMA得ME=MF,從而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分別求出BD和DM,即可得到答案.【詳解】解:設BN與AC交于D,過M作MF⊥BA于F,過M作ME⊥BC于E,連接AM,如圖:∵△ABC繞著點C逆時針旋轉60°,∴∠ACM=60°,CA=CM,∴△ACM是等邊三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵MF⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案為:.【點睛】本題考查等腰三角形性質、等邊三角形的性質及判定,解題的關鍵是證明∠CDB=90°.4、6【分析】依題意,直角三角形性質,結合題意能夠容納的最大為內切圓,結合內切圓半徑,利用等積法求解即可;【詳解】設直角三角形中能容納最大圓的半徑為:;依據直角三角形的性質:可得斜邊長為:依據直角三角形面積公式:,即為;內切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內切圓的性質,重點在理解題意和利用內切圓半徑求解面積;5、【分析】連接OB,交AC于點D,根據有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據菱形的性質可得:,,,根據等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設,則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質,等邊三角形的判定和性質,勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關鍵.6、5【分析】先根據垂徑定理求出AC的長,設⊙O的半徑為r,再連接OA,在Rt△OAC中利用勾股定理求出r的值即可.【詳解】解:∵⊙O的弦AB=8,半徑OD⊥AB,∴AC=AB=×8=4,設⊙O的半徑為r,則OC=r-CD=r-2,連接OA,在Rt△OAC中,OA2=OC2+AC2,即r2=(r-2)2+42,解得r=5.故答案為:5【點睛】本題考查的是垂徑定理及勾股定理,根據題意作出輔助線,構造出直角三角形,利用勾股定理求解是解答此題的關鍵.7、6【分析】如圖,連接OA、OB、OC、OD、OE、OF,證明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,再求出圓的半徑即可.【詳解】解:如圖,連接OA、OB、OC、OD、OE、OF.∵正六邊形ABCDEF,∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等邊三角形,∵的周長為,∴的半徑為,正六邊形的邊長是6;【點睛】本題考查正多邊形與圓的關系、等邊三角形的判定和性質等知識,明確正六邊形的邊長和半徑相等是解題的關鍵.三、解答題1、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關于點C中心對稱的點A'(-1,-3),B關于點C中心對稱的點B'(1,-1),C關于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎考點,掌握相關知識是解題關鍵.2、(1)B和C;(2);(3)【分析】(1)根據圖形可確定與點A組成的“成對關聯點”的點;(2)如圖,點E在直線上,點F在直線上,當點E在線段上,點F在線段上時,有的“成對關聯點”,求出即可得出的取值范圍;(3)分類討論:點G在上,點G在的下方和點G在的上方,構造的“成對關聯點”,即可求出的取值范圍.【詳解】(1)如圖所示:在點B,C,D中,與點A組成的“成對關聯點”的點是B和C,故答案為:B和C;(2)∵∴在直線上,∵點F與點E關于x軸對稱,∴在直線,如下圖所示:直線和與分別交于點,,與直線分別交于,,由題可得:,當點E在線段上時,有的“成對關聯點”∴;(3)如圖,當點G在上時,軸,在上不存在這樣的矩形;如圖,當點G在下方時,也不存在這樣的矩形;如圖,當點G在上方時,存在這樣的矩形GMNH,當恰好只能構成一個矩形時,設,直線與y軸相交于點K,則,,,,,∴,即,∴,解得:或(舍),綜上:當時,點G,H是的“成對關聯點”.【點睛】本題考查幾何圖形綜合問題,屬于中考壓軸題,掌握“成對關聯點”的定義是解題的關鍵.3、(1)2b;(2)4;;(3)①.②y=x+或.【分析】(1)令y=0,解方程即可;(2)設w=,根據OD=2b,BD=4-2b,構造二次函數求解即可;(3)①點N在以P為圓心,以2為半徑的圓上運動,當P、N、A同側且共線時,AN最小,用勾股定理計算即可.②分點M在對稱軸的左側和右側,兩種情形求解.(1)令y=0,得,解得x=0或x=2b,∵b>0,∴x=0舍去,∴點D的橫坐標為2b.(2)設w=,∵點D的橫坐標為2b,A(4,m),∴OD=2b,BD=4-2b,∴w==2b(4-2b)=,∵-4<0,∴當b=1時,w有最大值,最大值為4,此時拋物線的解析式為.(3)①∵點A(4,m)在拋物線上,∴m==4,∴OC=4,∵P為OC的中點,∴OP=PC=2,∵點C關于PM的對稱點N,∴OP=PC=PN=2,∴點N在以P為圓心,以2為半徑的圓上運動,如圖所示,當P、N、A同側且共線時,AN最小,∵AC=4,PC=2,∴PA=,∴AN的最小值為PA-PN=.②當點N落在拋物線的對稱軸上,且M在對稱軸的左側,如圖所示,設對稱軸與AC交于點H,交x軸于點Q,過點P作PG⊥HN,垂足為G,則QG=2,∵PC=PN=2,PG=1,∴NG=,∴HN=2-,點N(1,2+),設CM=a,則MN=a,MH=1-a,∴,解得a=4-2,∴點M(4-2,4),設直線MN的解析式為y=kx+b,∴,解得,∴直線MN的解析式為y=x+;當點N落在拋物線的對稱軸上,且M在對稱軸的右側,如圖所示,設對稱軸與AC交于點T,交x軸于點R,過點P作PK⊥TN,垂足為K,則KT=KR=2,∵PC=PN=2,PK=1,∴KR=,∴NR=2-,點N(1,2-),TN=2+設CM=b,則MN=b,MT=a-1,∴,解得b=4+2,∴點M(4+2,4),設直線MN的解析式為y=mx+q,∴,解得,∴直線MN的解析式為y=x+;綜上所述,直線MN的解析式為y=x+或y=x+.【點睛】本題考查了拋物線與x軸的交點,二次函數的最值,圓的基本性質,待定系數法確定一次函數的解析式,軸對稱的性質,勾股定理,熟練掌握圓的性質,拋物線的性質,靈活運用對稱的思想和勾股定理是解題的關鍵.4、(1)A(-1,0),B(0,2);(2)點C的坐標(,);(3)①求點F的坐標(1,2);②點P的坐標(,)【分析】(1)令x=0,求得y值,得點B的坐標;令y=0,求得x的值,取較小的一個即求A點的坐標;(2)設C的坐標為(x,-+x+2),根據AC=BC,得到,令t=-+x,解方程即可;(3)①根據題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據旋轉性質,得EF=BO=2,從而確定點F的坐標;②根據BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標.【詳解】(1)令x=0,得y=2,∴點B的坐標為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負半軸;∴A點的坐標(-1,0);(2)設C的坐標為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側的拋物線上,∴,此時y=,∴點C的坐標(,);(3)①如圖,根據題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點,∴點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點F的坐標為(1,2);②如圖,設拋物線的對稱軸與BE交于點M,交x軸與點N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點P的坐標為(,).【點睛】本題考查了拋物線與坐標軸的交點,旋轉的性質,兩點間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的對稱性,靈活理解旋轉的意義,熟練解一元二次方程是解題的關鍵.5、(1)見解析;(2)CD=,EF=1.【分析】(1)連接OC,根據圓的性質,得到OB=OC;根據等腰三角形的性質,得到;根據平行線的性質,得到;在同圓和等圓中,根據相等的圓心解所對的弧等即得證.(2)根據直徑所對的圓周角是直角求出∠ACB=90°,根據平行線的性質求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根據垂徑定理求得EC=AE=4,根據中位線定理求出OE,在Rt△CDE中,根據勾股定理求出CD,因為,所以△EDF∽△BCF,最后根據似的性質,列方程求解即可.【詳解】(1)解:連結OC.∵∴∠1=∠B∠2=∠C∵OB=OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直徑∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論