版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省眉山市仁壽縣文宮中學(xué)2025-2026學(xué)年高三數(shù)學(xué)第一學(xué)期期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為實(shí)現(xiàn)國民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實(shí)施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占2019年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見下表:實(shí)施項(xiàng)目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍2.已知集合,則()A. B. C. D.3.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.4.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.5.已知橢圓:的左、右焦點(diǎn)分別為,,過的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.6.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.47.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]8.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.9.已知為等腰直角三角形,,,為所在平面內(nèi)一點(diǎn),且,則()A. B. C. D.10.在三角形中,,,求()A. B. C. D.11.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.12.在中所對的邊分別是,若,則()A.37 B.13 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.14.已知函數(shù)在點(diǎn)處的切線經(jīng)過原點(diǎn),函數(shù)的最小值為,則________.15.如圖,已知,,為的中點(diǎn),為以為直徑的圓上一動點(diǎn),則的最小值是_____.16.已知實(shí)數(shù)a,b,c滿足,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項(xiàng)公式;(Ⅱ)若數(shù)列{bn}滿足:…,求{bn}的前n項(xiàng)和.18.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點(diǎn).(1)若a,且a≠0,證明:函數(shù)有局部對稱點(diǎn);(2)若函數(shù)在定義域內(nèi)有局部對稱點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點(diǎn),求實(shí)數(shù)m的取值范圍.19.(12分)在中,為邊上一點(diǎn),,.(1)求;(2)若,,求.20.(12分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,判斷函數(shù),()有幾個零點(diǎn),并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實(shí)數(shù)的取值范圍.21.(12分)設(shè)實(shí)數(shù)滿足.(1)若,求的取值范圍;(2)若,,求證:.22.(10分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進(jìn)而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的倍.故選:B本題考查了概率與統(tǒng)計,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.2.B【解析】
計算,再計算交集得到答案【詳解】,表示偶數(shù),故.故選:.本題考查了集合的交集,意在考查學(xué)生的計算能力.3.C【解析】程序在運(yùn)行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時,要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.4.B【解析】
由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理.(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和.5.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.6.D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.本題考查周期數(shù)列的應(yīng)用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.7.B【解析】
先求出,得到,再結(jié)合集合交集的運(yùn)算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.本題主要考查了集合的混合運(yùn)算,其中解答中熟記集合的交集、補(bǔ)集的定義及運(yùn)算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.8.C【解析】
由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)?,,所以解得,所以,所以,,,故選:C.本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.9.D【解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運(yùn)算,可求得點(diǎn)的坐標(biāo),進(jìn)而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D本題考查平面向量基本定理的運(yùn)用、數(shù)量積的運(yùn)算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.10.A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計算能力,屬于中等題.11.A【解析】
由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.12.D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由于,則.14.0【解析】
求出,求出切線點(diǎn)斜式方程,原點(diǎn)坐標(biāo)代入,求出的值,求,求出單調(diào)區(qū)間,進(jìn)而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點(diǎn),所以,,,.當(dāng)時,;當(dāng)時,.故函數(shù)的最小值,所以.故答案為:0.本題考查導(dǎo)數(shù)的應(yīng)用,涉及到導(dǎo)數(shù)的幾何意義、極值最值,屬于中檔題..15.【解析】
建立合適的直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),進(jìn)而可得的坐標(biāo)表示,利用平面向量數(shù)量積的坐標(biāo)表示求出的表達(dá)式,求出其最小值即可.【詳解】建立直角坐標(biāo)系如圖所示:則點(diǎn),,,設(shè)點(diǎn),所以,由平面向量數(shù)量積的坐標(biāo)表示可得,,其中,因?yàn)?所以的最小值為.故答案為:本題考查平面向量數(shù)量積的坐標(biāo)表示和利用輔助角公式求最值;考查數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸能力、運(yùn)算求解能力;建立直角坐標(biāo)系,把表示為關(guān)于角的三角函數(shù),利用輔助角公式求最值是求解本題的關(guān)鍵;屬于中檔題.16.【解析】
先分離出,應(yīng)用基本不等式轉(zhuǎn)化為關(guān)于c的二次函數(shù),進(jìn)而求出最小值.【詳解】解:若取最小值,則異號,,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(I);(Ⅱ)【解析】
(Ⅰ)設(shè)等差數(shù)列的公差為,則依題設(shè).由,可得.由,得,可得.所以.可得.(Ⅱ)設(shè),則.即,可得,且.所以,可知.所以,所以數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.所以前項(xiàng)和.考點(diǎn):等差數(shù)列通項(xiàng)公式、用數(shù)列前項(xiàng)和求數(shù)列通項(xiàng)公式.18.(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對稱點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(diǎn)(2)解:由題,因?yàn)楹瘮?shù)在定義域內(nèi)有局部對稱點(diǎn)所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因?yàn)?,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得本題考查函數(shù)的局部對稱點(diǎn)的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運(yùn)算能力.19.(1);(2)4【解析】
(1),利用兩角差的正弦公式計算即可;(2)設(shè),在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設(shè),,在中,由正弦定理得,,∴,∴,∵,∴∴.本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學(xué)生的運(yùn)算求解能力,是一道容易題.20.(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個零點(diǎn),證明見解析;(3)【解析】
對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點(diǎn)存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時,利用函數(shù)的單調(diào)性將問題轉(zhuǎn)化為的問題;②當(dāng)時,當(dāng)時,在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個零點(diǎn).證明如下:因?yàn)闀r,所以,因?yàn)?所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個零點(diǎn),由(1)可得時,,即,故時,,所以,由得,平方得,所以,因?yàn)?,所以在上恒成?所以函數(shù)在上單調(diào)遞減,因?yàn)?所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個零點(diǎn),綜上可知:函數(shù)有2個零點(diǎn).(3)記函數(shù),下面考察的符號.求導(dǎo)得.當(dāng)時恒成立.當(dāng)時,因?yàn)?,所以.∴在上恒成立,故在上單調(diào)遞減.∵,∴,又因?yàn)樵谏线B續(xù),所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的,使,∴,因?yàn)?所以∴因?yàn)楹瘮?shù)在上單調(diào)遞增,,所以在,上恒成立.①當(dāng)時,在上恒成立,即在上恒成立.記,則,當(dāng)變化時,,變化情況如下表:極小值∴,故,即.②當(dāng)時,,當(dāng)時,在上恒成立.綜合(1)(2)知,實(shí)數(shù)的取值范圍是.本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)個數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運(yùn)算求解能力;通過構(gòu)造函數(shù),利用零點(diǎn)存在性定理判斷其零點(diǎn),從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.21.(1)(2)證明見解析【解析】
(1)依題意可得,考慮到,則有再分類討論可得;(2)要證明,即證,即證.利用基本不等式即可得證;【詳解】解:(1)由及,得,考慮到,則有,它可化為或即或前者無解,后者的解集為,綜上,的取值范圍是.(2)要證明,即證,由,得,即證.因?yàn)椋ó?dāng)且僅
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 重慶課件配音行業(yè)標(biāo)準(zhǔn)
- 初二地理試題及答案
- 2026年聲帶息肉相關(guān)試題及答案
- 2025年職工招錄考試題及答案
- 2025年紅木考試題及答案
- 2025年測繪職業(yè)概論試題及答案
- 猜耳朵課件教學(xué)課件
- 財務(wù)管理期末考試題及答案
- 采煤入門培訓(xùn)課件
- (2025年)經(jīng)顱磁刺激治療慢性意識障礙專家共識課件
- 2025年重慶青年職業(yè)技術(shù)學(xué)院非編合同制工作人員招聘68人備考題庫及一套答案詳解
- 2025年常熟市交通產(chǎn)業(yè)投資集團(tuán)有限公司(系統(tǒng))招聘14人備考題庫含答案詳解
- 臨沂市公安機(jī)關(guān)2025年第四季度招錄警務(wù)輔助人員備考題庫新版
- 2025年新版中醫(yī)藥學(xué)概論試題及答案
- 深圳市龍崗區(qū)2025年生物高一上期末調(diào)研模擬試題含解析
- 欄桿勞務(wù)分包合同范本
- 2025年黃帝內(nèi)經(jīng)章節(jié)題庫及答案
- 具身智能+醫(yī)療康復(fù)中多模態(tài)感知與自適應(yīng)訓(xùn)練系統(tǒng)研究報告
- 廣東省深圳市寶安區(qū)2026屆高一上生物期末聯(lián)考試題含解析
- 自動化生產(chǎn)線調(diào)試與安裝試題及答案
- GB/T 7986-2025輸送帶滾筒摩擦試驗(yàn)
評論
0/150
提交評論