吉林省白城市通榆縣一中2025年數(shù)學(xué)高三上期末達標(biāo)檢測試題_第1頁
吉林省白城市通榆縣一中2025年數(shù)學(xué)高三上期末達標(biāo)檢測試題_第2頁
吉林省白城市通榆縣一中2025年數(shù)學(xué)高三上期末達標(biāo)檢測試題_第3頁
吉林省白城市通榆縣一中2025年數(shù)學(xué)高三上期末達標(biāo)檢測試題_第4頁
吉林省白城市通榆縣一中2025年數(shù)學(xué)高三上期末達標(biāo)檢測試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省白城市通榆縣一中2025年數(shù)學(xué)高三上期末達標(biāo)檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50502.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.3.已知平面向量滿足與的夾角為,且,則實數(shù)的值為()A. B. C. D.4.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當(dāng)取得最小值時,函數(shù)的解析式為()A. B.C. D.5.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.406.已知直線:()與拋物線:交于(坐標(biāo)原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.7.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.8.已知且,函數(shù),若,則()A.2 B. C. D.9.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.10.在各項均為正數(shù)的等比數(shù)列中,若,則()A. B.6 C.4 D.511.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為()A. B. C. D.12.已知函數(shù)在上可導(dǎo)且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、二、填空題:本題共4小題,每小題5分,共20分。13.春天即將來臨,某學(xué)校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學(xué)校的某班隨機領(lǐng)養(yǎng)了此種盆栽植物10株,設(shè)為其中成活的株數(shù),若的方差,,則________.14.的展開式中,的系數(shù)是______.15.如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.16.已知,,,的夾角為30°,,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽,要求在交付用戶前每件產(chǎn)品都通過合格檢驗,已知該工廠的檢驗儀器一次最多可檢驗件該產(chǎn)品,且每件產(chǎn)品檢驗合格與否相互獨立.若每件產(chǎn)品均檢驗一次,所需檢驗費用較多,該工廠提出以下檢驗方案:將產(chǎn)品每個一組進行分組檢驗,如果某一組產(chǎn)品檢驗合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對該組內(nèi)每一件產(chǎn)品單獨進行檢驗,如此,每一組產(chǎn)品只需檢驗次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗次數(shù)為.(1)求的分布列及其期望;(2)(i)試說明,當(dāng)越小時,該方案越合理,即所需平均檢驗次數(shù)越少;(ii)當(dāng)時,求使該方案最合理時的值及件該產(chǎn)品的平均檢驗次數(shù).18.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點M對應(yīng)的參數(shù),射線與曲線交于點.(1)求曲線,的直角坐標(biāo)方程;(2)若點A,B為曲線上的兩個點且,求的值.19.(12分)設(shè)函數(shù)其中(Ⅰ)若曲線在點處切線的傾斜角為,求的值;(Ⅱ)已知導(dǎo)函數(shù)在區(qū)間上存在零點,證明:當(dāng)時,.20.(12分)如圖,為坐標(biāo)原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當(dāng)直線的方程為時,求拋物線的方程;(2)當(dāng)正數(shù)變化時,記分別為的面積,求的最小值.21.(12分)△的內(nèi)角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.22.(10分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運算的能力,屬于中檔題.2.B【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時,x在點B處取得最大值,即,得;當(dāng)時,z在點C處取得最大值,即,得(舍去).故選:B.本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.3.D【解析】

由已知可得,結(jié)合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.本題考查向量的數(shù)量積運算,向量垂直的應(yīng)用,考查計算求解能力,屬于基礎(chǔ)題.4.A【解析】

先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.5.D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應(yīng)的常數(shù)項=80,由5-2r=-1得r=3,對應(yīng)的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=406.D【解析】

設(shè),,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標(biāo),最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設(shè),,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D本題考查直線與拋物線的綜合應(yīng)用,弦長公式的應(yīng)用,屬于中檔題.7.B【解析】

根據(jù)函數(shù)單調(diào)性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.8.C【解析】

根據(jù)分段函數(shù)的解析式,知當(dāng)時,且,由于,則,即可求出.【詳解】由題意知:當(dāng)時,且由于,則可知:,則,∴,則,則.即.故選:C.本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.9.A【解析】

分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.本題考查復(fù)數(shù)的除法運算,考查學(xué)生運算能力,是一道容易題.10.D【解析】

由對數(shù)運算法則和等比數(shù)列的性質(zhì)計算.【詳解】由題意.故選:D.本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則.掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.11.B【解析】

利用復(fù)數(shù)的除法運算化簡z,復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為利用模長公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為故選:B本題考查了復(fù)數(shù)的除法運算,模長公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.12.A【解析】

設(shè),利用導(dǎo)數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計算能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:本題考查二項分布的實際應(yīng)用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.14.【解析】

先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40本題考查二項式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.15.32π【解析】

設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過計算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進行求解即可.【詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當(dāng)平面ABD⊥平面BCD時,當(dāng)四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當(dāng)且僅當(dāng)x時取等號.解得a=2.此時三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運算能力和空間想象能力.16.1【解析】

由求出,代入,進行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析,(2)(i)見解析(ii)時平均檢驗次數(shù)最少,約為594次.【解析】

(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當(dāng)且取最小值時,該方案最合理,對進行賦值即可求解.【詳解】(1)由題,的可能取值為和,故的分布列為由記,因為,所以在上單調(diào)遞增,故越小,越小,即所需平均檢驗次數(shù)越少,該方案越合理記當(dāng)且取最小值時,該方案最合理,因為,,所以時平均檢驗次數(shù)最少,約為次.本題考查了離散型隨機變量的分布列、數(shù)學(xué)期望,考查了分析問題、解決問題的能力,屬于中檔題.18.(1)..(2)【解析】

(1)先求解a,b,消去參數(shù),即得曲線的直角坐標(biāo)方程;再求解,利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得曲線的直角坐標(biāo)方程;(2)由于,可設(shè),,代入曲線直角坐標(biāo)方程,可得的關(guān)系,轉(zhuǎn)化,可得解.【詳解】(1)將及對應(yīng)的參數(shù),代入得,即,所以曲線的方程為,為參數(shù),所以曲線的直角坐標(biāo)方程為.設(shè)圓的半徑為R,由題意,圓的極坐標(biāo)方程為(或),將點代入,得,即,所以曲線的極坐標(biāo)方程為,所以曲線的直角坐標(biāo)方程為.(2)由于,故可設(shè),代入曲線直角坐標(biāo)方程,可得,,所以.本題考查了極坐標(biāo)和直角坐標(biāo),參數(shù)方程和一般方程的互化以及極坐標(biāo)的幾何意義的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.19.(Ⅰ);(Ⅱ)證明見解析【解析】

(Ⅰ)求導(dǎo)得到,,解得答案.(Ⅱ),故,在上單調(diào)遞減,在上單調(diào)遞增,,設(shè),證明函數(shù)單調(diào)遞減,故,得到證明.【詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點,設(shè)零點為,故,即,在上單調(diào)遞減,在上單調(diào)遞增,故,設(shè),則,設(shè),則,單調(diào)遞減,,故恒成立,故單調(diào)遞減.,故當(dāng)時,.本題考查了函數(shù)的切線問題,利用導(dǎo)數(shù)證明不等式,轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.20.(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設(shè)點P(x0,),由x2=2py(p>0)得,y=,求導(dǎo)y′=,因為直線PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因為點P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當(dāng)且僅當(dāng)時取“=”號,即x02=4+2,此時,p=.所以的最小值為2+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論